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ABSTRACT

This report concerns the prediction of elastic moduli for fabric reinforced

composites. Many analysis methods previously applied to this problem are not

general enough for use with the more complex reinforcing geometries that have

been suggested for suppressing impact damage and general delamination. The

proposed analysis places no restrictions on fabric microgeometry except that

it be determinate within some repeating rectangular pattern. No assumptions

are made regarding fiber cross-sectional shapes or fiber paths.

The analysis is based on a mechanical model that consists of a single

rectangular unit cell which typically contains one repeating pattern of the

fabric design. Every unit cell is assumed to be surrounded on six sides by

identical unit cells, similarly oriented, with all common surfaces perfectly

bonded. Elastic analysis of one such cell element yields all 3-D moduli of

the composite.

For analysis purposes the unit cell is assumed to be divisible into small

rectangular subcells in which the reinforcing geometries are easier to

visualize, define, and analyze. Details of micromodeling and the use of

single, finite element hexahedra to mathematically represent each subcell are

described in this report. The analysis is applied to a variety of woven,

braided, and knitted fabric reinforcements in epoxy matrix. A special purpose

computer program based on this analysis is also described. Moduli predictions

from this program are compared to fabric reinforced composite test data. A

program listing with sample input and output is included in the Appendices.
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i. INTRODUCTION

Complex fibrous preforms (made from weaves, braids, knits, XYZ construction, etc.)

are under consideration for use as composite reinforcing materials. As

reinforcers, these preforms should increase impact resistance, reduce lay up time,

and generally improve interlaminar properties. Use of these textile structures

introduces a variety of both new and old manufacturing processes into the

fabrication cycle and creates an intermediate material stage. This stage consists

of an array of systematically interlaced fiber bundles (yarns or tows) surrounded

and impregnated by a matrix material. The basic repeating structural element in

this array has characteristic dimensions that are much larger than a single fiber

diameter, but are on the order of the structural plate or shell wall thickness

(Figure i) . From an analyst's point of view this stage creates a gap between

micro-mechanics and laminate analysis, and requires a new level of mechanics

analysis. The term "fabric mechanics" seems appropriate for categorizing this

level of composite mechanics. However, use of this terminology may confuse

textile engineers who normally associate fabric mechanics with unimpregnated

fabric behavior. The goals of fabric mechanics is to predict material properties

at the fabric reinforced composite level from knowledge of unidirectional

composite and bulk matrix material properties. This level of analysis is

necessary to reduce dependence on testing and to assist in data extrapolation and

interpretation. The influence of factors such as fiber curvature, misalignment,

and ply nesting are not conveniently assessed by either micro-mechanics or

laminate analysis. Fabric mechanics' role in the scheme of composite mechanics is

shown in Figure i. For laminates made from unidirectional material, fabric

mechanics is not required because micro-mechanics provides all the necessary

information for laminate analysis.



Although methods of fabric analysis are not firmly established, its goals are

identical to those of all mechanics analyses; namely, to predict stresses and

deformations within a deterministic structure as a result of prescribed external

loads or deformations. From these predictions (plus suitable failure criteria)

composite static properties of stiffness and strength can be estimated. The

limited objective of this report is to develop adequate capability (and a computer

code) to predict static stiffness of various fabric reinforced composites proposed

for minimizing impact damage. Several methods for predicting these properties

have been proposed, but they are built on many assumptions, and do not enjoy

widespread use or confidence.

The principal barrier to improved analyses is the geometric complexity of most

fabric microstructures. The proposed analysis crosses this barrier via two stages

of mechanical modeling. For example, consider the rib weave fabric microstructure

shown in Figure 2. This fabric geometry can be subdivided into small block

substructures or subcells (as shown in the same Figure). Simpler reinforcing

fiber geometry within each different subcell can be modeled by finite element

hexahedra. After reassembling the subcells the boundary conditions required to

simulate the six independent unit strain cases of 3-D elasticity may be enforced

(as in micro-mechanics). The resulting elastic solutions yield all necessary

information for computation of the 6 X 6 stiffness or flexibility matrix of the

composite. The approach is well-suited to computer analysis. A special propose

code has been written that predicts the stiffness of fabric reinforced composites

on the foregoing basis. A laminate analysis must be performed if several

different fabrics are combined into a thick, laminated structure. This approach

has the added advantage of lying within the range of experience of most structural

analysts.
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One of the long range objectives of this work is to develop the capability of

estimating all of the 3-D static material property inputs required of transient

dynamic impact codes that analyze the response of composite target plates to

spherical impactors (Ref. i). This capability will permit rational selection of

woven, braided, and stitched fabric parameters to best meet impact damage

requirements with the least penalty to the basic static design properties.



2, REINFORCING GEOMETRY

In the textile sense, the term "fabric" is applicable to any network of bonded or

unbonded fibers which results in an essentially planar structure that is flexible

yet cohesive beyond the point of being self-supporting. The fabrics can be

categorized as having either a random distribution of fiber (as in a felt or

bonded flock) or an orderly distribution (as in weaves, braids or knits). Hybrids

of both are possible and some elements of order and disorder are always present in

both. Yarns or tows can also be continuous or discontinuous or a hybrid of both

(as in cut pile carpetS).

arranged in identifiable

considered. It is also

In this report, only fabrics made from continuous tows

and repetitious patterns of entanglement will be

assumed that this repetitious pattern has finite

dimensions and can be contained exclusively within the volume of a rectangular

prism. This prism is termed a "unit cell" of the fabric. Reproduction of this

unit cell, rigid transformation of it, and attachment to compatible surfaces of

other unit cells, allows any large planar area to be covered by this fabric, with

areal contours closely approximated by outer boundaries of units cells. Also unit

cells can by layered to fill any closed volume, even where minimum dimensions of

that volume are several orders of magnitude larger than unit cell dimensions. It

is assumed in this process that all common boundaries between unit cells are

perfectly bonded to each other.

This 3-D unit cell often visually relates to the 2-D fabric design plan that,

along with the harness draft and the chain draft, is typically used to describe a

weave pattern and to set up a shuttle loom to make that weave. The design plan is

a coded representation of a weave, whereas the unit cell is a true scale model of

the weave, albeit a somewhat idealized one. A design plan is usually drawn on 8 X

8 design paper. Columns represent warp yarns; rows represent fill yarns. Each



small square represents an intersection of one warp and one fill yarn. A shaded

square indicates that the fill yarn crosses over the warp yarn at that

intersection.

One unit cell representation of a plain weave is shown in Figure 3A. The

corresponding fabric design plan is shown in Figure 3B. But, neither the unit

cell nor the design plan are unique. Another very different unit cell of the same

weave is shown in Figure 3C.

Since unit cells are not unique, the question arises as to which unit cell should

form the basis for fabric analysis. The answer is that unit cell which is

simplest to analyze. Often, the simplest cell is presumed to be the smallest

cell. However, the smallest unit cell is frequently difficult to analyze,

particularly when it has complex boundaries, for example the twill weave (Figure

4). Boundaries of the smallest twill weave unit cell do not form a rectangular

prism. Hence, mechanical analysis of this weave can be difficult. The larger

unit cell of Figure 4C does not pose this problem.

Several rectangular unit cells for common weaves, knits and braids are shown in

Figure 5. For some complex fabrics, it is difficult to identify a rectangular

unit cell. For woven fabrics, one repeat of the design plan often resembles an

out-of-scale projection of a unit cell surface. But with knits or braids there is

no corresponding 2-D design plan. However, rectangular unit cells generally can

be established, although some liberties with the tow geometry may be required.

For example, some tow geometries like satin weaves (with large, complex,

rectangular, unit cells) contain smaller, simpler, trapezoidal, unit cells.

Slightly distorting the boundary of the smaller unit cell can make it rectangular

but this process entails some violation of the true microgeometry.



3. HISTORICAL DEVELOPMENT

Woven fiberglass cloth was the first reinforcing material with enough strength and

stiffness for general use on aircraft structures. However, relatively few fabric

weave styles saw extensive application. These fabrics were experimentally

characterized using epoxy and polyester resins and were treated like new

orthotropic materials with little consideration of fabric microstructural

analysis. Although it was known at that time that fabric microgeometry had a

significant effect on moduli and was one of the determining factors in stress

failure of this material, a convincing mechanical analysis of this problem was

beyond computational capabilities. The advent of filament winding and

unidirectional prepregging, along with increased capability in computing, soon

made such an analysis possible at the unidirectional level. It was assumed that a

wide range of fiber volume fractions and fiber cross-sectional shapes would

necessitate some type of micro-mechanics design/analysis cycle. Instead

unidirectional materials became even more standardized than fabrics. Test data

replaced micro-mechanics.

The search for improved impact resistance has brought about a renewal of interest

in more complex reinforcing geometries. Meanwhile, computing capability has kept

pace with materials development. This increased computing capability now allows

design and analysis of fabrics at a level comparable to design and analysis of

unidirectional materials. The number of geometric variables present and the

requirements of impact resistance suggest fabric reinforcements will play a role

in developing impact resistant composites.

First attempts to extend composite mechanics beyond the realm of planar analysis

arose in conjunction with carbon-carbon development for reentry vehicles (Ref 2).

These attempts ranged from 3-D versions of the rules of mixture and netting



analysis to finite element solutions. Fiber curvature was seldom considered.

Two-dimensional analysis of wavy fiber reinforced composites was considered by

some to be an initial step toward the analysis of true fabric reinforced

composites (Ref. 3). In this approach a single wavy fiber is treated as a curved

beam on an elastic foundation.

Another step toward geometric reality (Ref. 4) involved modeling of orthogonal

fiber arrays. However, the problem was reduced to two dimensions and solved by

finite elements.

Among the first to treat fabric mechanics as a true 3-D problem were Ishikawa,

Chou, et al., (Refs. 5 through ii). Based on assumed fiber paths and cross-

sectional shapes these authors developed a variety of models based largely on

"strength of materials" type idealizations and extended some of this work into the

nonlinear property realm.

Materials Sciences Corporation ......... a simple fabric model based on earlier

work on random fiber reinforcements (Ref. 12).

Another more refined approach was the attempt to fit fabric mechanics directly

into the context of laminated plate theory (Ref. 13). This analysis also

occasionally relies on "strength of materials" assumptions (Ref. 14).

The primary legacy of the previous work lies not in analytical details, but in the

modeling of complex fabric microgeometry with unit cells and subcells. Not only

does this reduce the geometry problem to smaller, "more digestible" pieces; it

also meshes with the finite element scheme of reducing a complex structure to an

assemblage of simpler ones which can be characterized, reassembled, and

manipulated to predict the response of the unit cell and the composite.



4. FABRIC ANALYSIS

For convenience in establishing thickness direction properties, each fabric

reinforced composite ply hereafter will be considered to be imbedded in a thick

laminate of identical plies layered such that each unit cell in each ply

represents one level in a vertical stacking of unit cells extending through the

full _hickness of the laminate (like stories in a multi-story building). For

example, treat each unit cell as a single brick in a stack bond wall (Figure 6).

A wide variety of other stacking arrangements are equally valid and can be

observed in laminates. Cursory investigations show these stacking variations to

be of secondary importance to the principal ply stiffness. A more thorough

investigation would be appropriate to strength analysis but of lower priority to

this study.

4.1 Determination of Overall Elastic Constants

Now consider a large cube of fabric reinforced composite material in which

dimensions of the cube are orders of magnitude greater than dimensions of the unit

cell. For most engineering purposes such a composite material can be considered

homogeneous and anisotropic with a linear stress-strain law of the form:

zz
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where: E
ii = average normal strain,

_ij = average shear strain,

u

(_ = average normal stress (psi)
ii

m

ij = average shear stress (psi)

= flexibility coefficient (in2/ib).S

ij

If the cube of material is subjected to a unit average strain in the x-

direction, with all other average s_rains held to zero, then _xx, _yy, _zz,

_yz, _xz, _xy represent average stresses corresponding to this strain state. In a

hypothetical test these stresses could be considered to be measured quantities.

The stress-strain law given above would then consist of six independent equations

in the 36 unknown Sij coefficients. Repeating this test with _yy = 1 and all

other average strains held at zero would yield six more equations in the S..
13

unknowns. All six independent unit strain states would yield 36 equations in the

36 unknown S... These terms are the flexibility coefficients of the composite.
13

Inverting the matrix of flexibility coefficients yields the stiffness matrix [D]:

(_xx

(_yy

(_zz

_yz

_xz

_xy

DII DI2 DI3 DI4 DI5 DI6

D21 D22 D23 D24 D25 D26

D31 D32 D33 D34 D35 D36
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D51 D52 D53 D54 D55 D56

D61 D62 D63 D64 D65 D66

_xx

Eyy

_zz

_yz

m

_xz

Yxy

(4.2)



where: D.. = stiffness coefficient of composite (psi).
13

E.,11 Vij, G..13 etc. for the composite can be obtained by considering the material

response to single nonzero components of each of the six average stresses

where: E = modulus of elasticity of material (psi),
ii

V. = Poisson's Ratio,
13

G.. = modulus of rigidity of material (psi).
13

4.2 Unit Cell Boundary Conditions

Now return to the initial problem of obtaining the average composite stress

components _xx, _yy, _zz, _yz, _xz, _xy resulting from the average strain state

_ _ _ -=i _ = £ = 7xyxx " yy zz xz = = 0. (4.3)

This problem can be resolved by considering a single unit cell of the material,

sufficiently far removed from the surfaces to be free from edge, corner, or

surface effects. Since all such unit cells in the material are indistinguishable

from one another the response of any two unit cells to any uniform average stress

or strain state must be similar, except for rigid body motion.

Relative displacement of the eight corners of the unit cell are shown in Figure 7.

Any other set of relative displacements would be incompatible, inhomogeneous (in

the average strain sense), or in violation of the unit strain case that it

represents.

Now consider boundary conditions on surfaces of the unit cell. First consider

interlamina upper and lower surfaces of the cell. For every point on the upper

surface there is a corresponding point directly below it on the bottom surface

(Figure 8). Call these two points "image points" because the top image point on

I0



one unit cell is coincident with the bottom image point on the unit cell directly

above it. Similarly the bottom image point on any cell coincides with the top

image point on the unit cell below it. Since there is no reason to expect any two

cells to deform differently under uniform average strain, the displacements of

image points can differ only by the amount of displacement associated with the

homogeneousunit strain case (plus some arbitrary rigid motion). Ignoring rigid

motion, the displacement boundary conditions (corresponding to unit strain case

4.3) for image points i,j (Figure 8) have the form:

U. = U., V = V., W. = W. (4.4)
z 3 z 3 z 3

where U,V,W designate displacements in the positive x,y,z coordinate directions,

respectively. This condition provides three equations in the six displacement

components of the two image points. Three additional equations are required for a

complete statement of a 3-D elastic problem.

Stress continuity considerations provide these equations. The stress vector at any

point on the lower surface of one unit cell is the reaction to the stress vector

at the same point on the upper surface of the unit cell lying directly below it.

Also, surface stresses on one unit cell are assumed to be identical to stresses on

any other cell. Therefore, stress vectors at image points of the same cell must

be equal zn magnitude but oppositely directed.

(_ (i) = (_ (j), • (i) = _ (j),
zz zz xz xz yz

These conditions

(i) = _ (j)
yz

(4.5)

where (_,_ represent surface stress components, provide three more equations at

each pair of image points. These conditions (4.4 and 4.5) place the problem in

the category of a mixed boundary value problem in elasticity; i.e. both stress and

displacement conditions apply. A similar argument may be applied to image points

on any other pair of opposite sides of the unit cell. On sides perpendicular to

11



the x-axis the U displacement condition has the more general form U. = U. + A,
x 3

where A is a constant that accounts for the stretching in the x-direction.

Similar conditions can be specified for the other two normal strain cases.

Boundary conditions for the three unit shear strain cases differ from normal

strain cases only in that the constant terms that appear in some of the

displacement boundary conditions are associated with displacement components that

are parallel rather than normal to sides of the unit cell where they apply.

4.3 Symmetry Boundary Conditions

Structural symmetry often can be used to reduce the portion of the unit cell that

needs to be analyzed. However, boundary conditions on the plane of symmetry, and

the cell face parallel to the plane of symmetry, will differ from those conditions

previously stated. Consider only the special case where two parallel faces of the

reduced unit cell are both planes of symmetry.

First consider the three unit normal strain problems. All eight corners of the

reduced (by symmetry) unit cell now lie on planes of structural (and loading)

symmetry, but their pure displacement boundary conditions are not changed from the

previous discussion; i.e. their displacements are what establish the particular

unit strain case under consideration. Points lying on one plane of symmetry have

the traditional symmetry conditions of zero (or constant) normal displacement and

zero shear stress. Thus, stresses and displacements at image points that lie on

parallel planes of symmetry are no longer related through their boundary condition

equations.

12



Unit shear strain load cases divide into two categories: symmetric loading

categories and antisymmetric ones. Symmetric loading cases do not differ from

unit normal strain cases. Antisymmetric loading categories have boundary

conditions that are the converse of the symmetric ones; i.e., displacements

parallel to a plane of structural symmetry are zero (or constant), and stresses

normal to that plane are zero.

13



5. SUBELEMENT MECHANICS

The previous section (4.) of this report describes the elastic structure (the unit

cell), the various load (or displacement) cases applied to that structure, and the

boundary conditions prevailing on surfaces of the structure. This section

considers a numerical method for estimating internal (and surface) displacements

of the unit cell for each set of loads and boundary conditions. This analysis is

a direct application of the finite element method in which the unit cell

structure is idealized into a number of smaller polyhedra (subcells) joined

together at common vertices. The presumption is that stress, strain, and

displacement fields are simpler to approximate within the subcell, than in the

larger structure. Each subcell is then analyzed for the most general set of loads

(or displacements) at each of the vertices and reassembled into the unit cell

structure.

If the unit cell is in the shape of a rectangular prism it is convenient to

consider only subdivisions of the unit cell into smaller rectangular prisms

(subcells). The advantage of this restriction is that it simplifies the geometry

and the analysis, and eases coding for digital computation. This restriction is

one of convenience and is not particularly restrictive because fabric

microgeometries are often rectangular to some degree. For example, consider the

plain weave unit cell of Figure 9.* This unit cell of Figure 9 can be subdivided

into 16 subcells as shown. These subcells are all rectangular prisms, like the

unit cell.

* A subsequent section contains photomicrographs of aclual fabric reinforced composites, including a plain weave. The

sirrularities between cross sections of the more realistic c_it ceils which model the composite microstructure and the

pl-_tomicrographs are apparent.

14



If the warp and fill tows are similar and their paths are the same, then the 16

subcells are all simple transformations of each other; i.e., any one of their

reinforcing microgeometries can be reproduced by a combination of rigid motions

and reflections about the face planes of any one of the subcells. The

transformation makes the chore of describing microgeometry much simpler since a

detailed description of one subcell (mastercell) and a set of instructions for the

series of coordinate transformations will suffice to reconstruct the unit cell.

As another example consider the unit cell of the 2/2 rib weave construction with

similar warp and fill yarn geometries (Figure 2). This unit cell can be

constructed from a sequence of transformations of two master subcells designated I

and II in Figure 2.

5.1Subcell Analysis

Now consider the elastic analysis of a single rectangular subcell. For

incorporation into a finite element analysis at the simplest level, it is

necessary first to obtain a stiffness matrix relating the three components of

force, acting at each corner of the subcell, to the three components of

displacement at each corner. The method of obtaining this matrix is the central

problem in fabric reinforced composite stiffness analysis. Many possible

approaches exist. Simpler approaches often overlook fiber reinforcing detail.

Refined analyses lead to greater computational efforts than the problem warrants.

Hence, a compromise is needed. One compromise is suggested by the general energy

formulation for the stiffness matrix of rectangular finite element hexahedra (Ref.

15); l.e.,

15



[k] =vJ/J[B]T[D]fff [B] d(vol) (5.1)

where: [D] = 3-D material stiffness matrix,

[B] = strain/displacement matrix,

vol = volume

[D] contains only local material property distribution functions and [B] contains

only derivatives of displacement mode shapes. Superscript T designates matrix

transposition. [D] is usually obtained by inverting the flexibility matrix [S].

[S] is usually obtained by transforming the stresses and strains from material

coordinates of orthotropy into the coordinate of integration. In the natural

coordinates of the material (x

[S] =

i' x2' x3) :

1/E 1 - V21/E 2 - V31/E 3 0 0

- VI2/E 1 I/E 2 - V32/E 3 0 0

- VI3/E 1 - V23/E 2 I/E 3 0 0

0 0 0 I/G23 0

0 0 0 0 I/G

0 0 0 0 0

13

I/G12

0

0

0

(5.2)

0

0

Formulae for [B] depend on the form of the assumed displacements U(x,y,z),

V(x,y,z), and W(x,y,z). A variety of displacements have been associated with

hexahedra. The first hexahedra were formed from various combinations of

tetrahedra whose displacements were assumed to be linear. Higher order tetrahedra

*Assuming the constitent materials to be orthotropic rather than generally anisotropic does not restrict the response of the

unit cell to be less than generally anisotropic_

16



were also used.

32 nodes.

were also

hexahedra.

Later, isoparametric families of hexahedra were used with 8, 20,

All nodes were located on element edges. Elements with internal nodes

investigated. Also used were super-elements formed from smaller

Displacement derivatives were used as nodal degrees of freedom also.

The intent of this study was to begin with simple elements, increasing their

complexity only as required to obtain acceptable accuracy for moduli predictions.

The first displacements chosen were those associated with eight-node isoparametric

hexahedra (Ref. 15); i.e. :

8abc{U,V,W}=(a+2x) (b-2y) (c-2z) {UI,VI,W I}

+ (a+2x) (b+2y) (c-2z) {U2,V2,W 2}

+ (a-2x) (b+2y) (c-2z) |U3,V3,W 3}

+ (a-2x) (b-2y) (c-2z) {U4,V4,W 4 }

+(a+2x) (b-2y) (c+2z){U5,V5,W 5}

+ (a+2x) (b+2y) (c+2z) {U6,V6,W 6}

+(a-2x) (b+2y) (c+2z) {U7,V7,W 7}

where:

+(a-2x) (b-2y) (c+2z){U8,V8,W 8}

a = subelement side length in x-direction,

b = subelement side length in y-direction,

c = subelement side length in z-direction.

Later, additional internal degrees of freedom associated with incompatible mode

corrections (Refs. 16, 17) were incorporated into the current analysis.

All elements of the [B] and [D] matrices are functions of spatial coordinates

within the subcell, if more than one material is present in the subcell, [D] is

discontinuous in the region of interest and derivatives of true displacements will

17



also be discontinuous. Nevertheless, the integration for obtaining the stiffness

matrix can still be performed. Mathematically, functions of class C {without
f O

continuous first derivatives), can be approximated by a series of functions of

class C 1 (with continuous first derivatives).

Formation of the stiffness matrix from [B] and [D] requires numerical integration

T
of the matrix product [B] [D] [B]. Integration of a matrix product is the

integration of each element of the product matrix. Various mensuration formulae

exist which are applicable to the formation of this integral; e.g., Gaussian or

Newton-Cotes quadrature. In this report only the simplest step-function

approximation to the integrand is used for computing stiffness matrices. The

integral is formed independently for each different material appearing in the

subcell, and then is summed over all materials in the subcell.

For integration purposes, a 3-D grid is superimposed on the subcell volume as

follows. First, each set of parallel subcell edges is divided into N unequal

segments. N can be different for each coordinate direction. Planes are

constructed through these points of subdivision, normal to the edges of the

subcell. Intersections of these three sets of planes, within (or on) boundaries

of the subcell, are the integration points (Figure i0). Each element of the

[B]T[D] [B] matrix is evaluated at each integration point.

For each material a local average value of a fiber reinforcing direction is input

at each integration point. Each average value is estimated by considering all of

the material closest to that integration point. The fiber direction is

established by specifying the two spherical angles (_i,_2) that the fiber

principal axis makes within a local coordinate system parallel to the axes of

integration (See Figure Ii). Elastic properties of the material are then

transformed into the subcell reference system of integration. The value of each
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T
element of the matrix product [B] [D] [B], for that material, is then computed at

the integration point and multiplied by the product of the volume fraction of the

material at that point times the total rectangular volume of neighboring space

associated with that integration point (Figure 12A). The resulting matrix

quantity is then totaled over each integration point and material.

Since the integration grid spacing is variable, the volume of any material

associated with any integration point can be obtained by summing the material

volumes of the eight octants of volume adjacent to the integration point (See

Figure 12B).

For simplicity it is often convenient to consider one volume of impregnated tow

(for example a warp tow) as one material, while another volume of impregnated tow

(for example a fill tow) is considered to be a different material, even though

they may have the same elastic properties. This avoids the assigning of more than

one fiber direction to a material at an integration point. Many details of

reinforcing microgeometry are lost in the integration process. Examples include

the fiber location with respect to an integration point and local fiber curvature.

$,2 Subcell Transformations

As mentioned previously, the ability to transform the stiffness matrix of a

subcell into the global coordinate system of the unit cell is essential. For

rectangular hexahedral subcells, only a limited number of transformations are

needed, namely, rigid rotations about the coordinate axes and reflections about

those axes. First consider a reflection about the x-coordinate axis of Figure 13.

This is the coordinate transformation x = -x, y m _, z = z. Let the node points

of the subce!l be ordered in the sequence shown in Figure 13 and forces (Xi,Yi,Z i)

and displacements (Ui,Vi,W i) associated with those nodes ordered as follows:
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{XI,YI,ZI,X2,Y2,Z2, • " " ,X8,Y8,Z8}

{UI,VI,WI,U2,V2,W2, " • " ,U8,V8,W8}.

The rearrangement of the microgeometry caused by reversal of the x-axis is

reflected in the rearrangement of rows and columns of the [k] matrix as follows:

{-X5,Y5,Z5,-X6,Y6, Z6,-X7,Y7,Z7,-X8,Y8,Z8 ,

-XI,YI,ZI,-X2,Y2,Z2,-X3,Y3,Z3,-X4,Y4,Z4 }

{-Us,V5,W5,-U6,V6,W6,-U7,V7,W7,-U8,V8,W8 ,

-UI,VI,WI,-U2,V2,W2,-U3,V3,W3,-U4,V4,W4}

Similar exchanges of rows, columns, and signs can characterize a reversal of fiber

geometry about the y or z-axes.

Now consider changes in fiber reinforcing geometry brought about by rotation of

the subelement about a coordinate axis. Look at rotation about the x-axis of 90 °

as shown in Figure 14. The following rearrangement of rows and columns of the [k]

matrlx achieves this reinforcing geometry modification:

{X4,Z4,-Y4,XI,ZI,-YI,X2,Z2,-Y2,X3,Z3,-Y3 ,

X8,Zs,-Ys,X5,Z5,-Y5,X6, Z6,-Y6,X7,Z7,-Y 7 }

{U4i,W 4 , -V 4, U 1 ,W 1 , -V 1 ,U 2, W 2, -V 2, U 3, W 3, -V 3,

Us,W 8,-vS,U5,W 5,-v5,U6,W 6,-v6,U7,W 7,-v 7 }
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A similar rotation of 180 ° about the x-axis leads to the following rearrangement

of forces and displacements:

{X3,-Y3,-Z3,X4,-Y4,-Z4,Xl,-YI,-Zl,X2,-Y2,-Z 2,

X7,-Y7,-Z7,X8,-Ys,-Zs,X5,-Y5,-Z5,X6,-Y6,-Z6}

{U3,-V3,-W3,U4,-V4,-W4,UI,-VI,-WI,U2,-V2,-W 2,

U7,-V7,-W7,U8,-Vs,-W8,U5,-V5,-W5,U6,-V6,-W6 }

A rotation of 270 ° about the x-axis is produced by the

substitution:

{X2,-Z2,Y2,X3,-Z3,Y3,X4,-Z4,Y4,Xl,-ZI,YI •

X6,-Z6,Y6,X7,-Z7,Y7,Xs,-Zs,Ys,X5,-Z5,Y5 }

following row/column

{U2,-W2,V2,U3,-W3,V3,U4,-W4,V4,UI,-WI,V I,

U6,-W6,V6,U7,-W7,V7,Us,-Ws,Vs,U5,-W5,V5 }

In an analogous manner, stiffness matrices corresponding to subelement rotations

or reflections about the y and z-axes may be obtained. Any sequence of rotations

and/or reflections may follow one another in order.
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6. ASSEMBLY AND SOLUTION

The process of assembling various subcell stiffness matrices into a unit cell

stiffness matrix is similar to any other finite element assembly. First, nodal

forces and displacements are arranged in some convenient order. Each element of

each subcell stiffness matrix is then placed in its appropriate location within

the unit cell stiffness matrix. All terms in any location of the unit cell matrix

are summed to obtain the unconstrained stiffness matrix of the assembled unit

cell. Now consider the manner in which the nodal displacements are obtained from

the unit cell stiffness matrix, the applied displacements (at corners of the

cell), and the surface boundary conditions.

6.1 Discrete Unit Cell Boundary Conditions

Unit cell corner displacements are established by the particular applied unit

strain and by the location of the zero displacement reference axis. In this

report the unit cell is always located wholly within the positive octant of a

right hand x,y,z coordinate system with one corner of the unit cell at the origin

(Figure 7), the zero displacement reference point. If the unit cell has

dimensions A,B,C in the x,y,z directions respectively, then the eight corner nodes

have the coordinate locations shown in Figure 7. Corner node displacements for

the six average unit strain cases of interest are given in Table i.

Next consider boundary conditions that apply at a finite element node point

situated on either the upper or lower surface of the unit cell, a common point on

two adjacent plies (Figure 8). The nodal boundary conditions are equivalent to

the continuum elastic boundary conditions discussed previously (Section 4.).

Nodal forces at two image points (i,j) must be equal but oppositely directed

(Figure 8), i.e.,
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X. - -X., Yi " -Y , Z. = -Z. (6.1)I 3 3 I 3

while the corresponding displacement boundary conditions at the same two nodes

are:

Unit Strain Case (I)

Unit Strain Case (2)

E I* W i= ; U, = U.; V. = V ; = W
xx 1 3 1 j j

m

= l*
Eyy ; U. " U ; V. = V.; W. = W.1 j 1 3 1 3

Unit Strain Case (3) _ i*
zz U i = Uj; V. = V.; W. -C = W.I 3 i 3

= i*" U i = Uj; V. -C = Vj; W i = W.Unit Strain Case (4) yz ' 1 3

= i*; U -C = Uj; V i = Vj; W i = W.Unit Strain Case (5) xz i 3

Unit Strain Case (6) xy ; U. = U.; V i = V ; W. = W.I 3 j 1 3

(6.2)

If there is more than one subcell per ply thickness then there may be node points

on all four vertical faces of the unit cell that are not edge or corner nodes. If

these vertical faces are not planes of structural symmetry then the mixed boundary

conditions at these node points will be similar to those just stated for upper and

lower surface image points. Only the magnitude and location of the constants in

the displacement constraints will differ.

6.2 Discrete Symmetry Boundary Conditions

Where structural symmetry conditions exist on a vertical face of the unit cell,

nodal force conditions become, for all nodes (except corner nodes) on planes of

symmetry perpendicular to the

*All olher average strain c_ts equal zero.
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x-axis

y-axis

Y = Z = 0X = 0

X= Z = 0Y = 0

for Unit Strain Cases (I), (2), (3) , (4)
(6.3)

Jfor Unit Strain Cases (5), (6)

for Unit Strain Cases (I), (2), (3), (5) 1
(6.4)

Jfor Unit Strain Cases (4), (6)

Displacement constraints, on planes of symmetry perpendicular to the x-axis, are:

U = 0 (or A) for Unit Strain Case (I)

U = 0 for Unit Strain Case (2), (3), (4) I (6.5)
V = W = 0 for Unit Strain Case (5), (6)

For planes of symmetry perpendicular to the y-axis:

V = 0 (or B) for Unit Strain Case (2)

V = 0 for Unit Strain Case (I), (3), (5) (6.6)

U = W = 0 for Unit Strain Case (4), (6)

Similar sets of boundary conditions can be specified for all other unit average

strain cases with the chief difference being size and location of the constant

terms in the displacement constraints. The general form of the system of

equations for nodal forces and displacements can now be written.

6.3 General Statement of the Discrete Problem.

The assembled unit cell stiffness matrix, [K], relates all nodal forces, {F}, and

displacements {6}, as follows:

{F} = [K] {5}. (6.7)

The homogeneous force boundary conditions at surface and edge nodes can be written

symbolically in matrix form as:

{O} = [H] {F} (6.8)

where {O} is the null vector and [H] the coefficient matrix.

The homogeneous and inhomogeneous displacement boundary conditions at surface,

edge and corner nodes can similarly be written in matrix form as:
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(O,A,B,C}- [J] (_} (6.9)

where {O,A,B,C} is a vector containing only the values O,A,B or C and [J] is the

coefficient matrix. Implicit is the absence of force resultants at all internal

nodes.

The foregoing system of equations (6.7,6.8,6.9) has dimension 6n by 6n where n is

the number of node points in (or on) a unit cell The size of the system can be

substantially reduced before attempting a solution.

All nodal forces must be eliminated by first setting to zero those forces that are

zero in the stiffness matrix. Remaining nonzero force equations involving the

stiffness matrix are then used to eliminate all nonzero force terms from the

homogeneous force boundary conditions. The combination of zero-force stiffness

equations and the force boundary conditions (in terms of displacements) comprise a

set of homogeneous equations in nodal displacement variables only. Each

displacement boundary condition is so simple that it can be used to eliminate one

surface displacement variable in the foregoing set of homogeneous equations. Over

half of the displacement variables on the faces Of the unit cell are eliminated

in this manner. The remaining equations can now be solved for all unconstrained

displacements. The foregoing procedure is not standard finite element procedure.

Most general purpose finite element programs do not treat boundary conditions of

this complexity.

Displacement boundary conditions and corner conditions are then used to obtain

constrained displacement values. All surface and corner forces can be obtained by

substituting the complete set of nodal displacements into the original stiffness

equations. Nodal force components on any side of the unit cell can then be summed

and divided by the area of the side. This dividend is the average stress on that

side. These stress values are the coefficients of the 3-D composite stress/strain
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law, [D]. Elastic solutions fQr the six unit strain cases provide all 36

coefficients of the stress/strain law which can be inverted to provide the

composite flexibility matrix. Recourse to definitions Df engineering constants

provides formulae for these quantities.

One remaining simplification eliminates the need for reformulating and resolving

each elastic displacement problem for each of the six unit strain cases. Each

unit strain case is considered to be a combination of a homogeneous (uniform)

strain field plus an inhomogeneous (nonuniform) one. Nodal displacements for the

six uniform strain fields are obvious from knowledge of the response of

homogeneous material to uniform surface stress states. The six sets of equations

for the nonuniform displacements turn out to differ only in the inhomogeneous

portions of their algebraic equations. Thus only one large matrix inversion is

required (as opposed to six). If NX is the number of subcells along the x-

parallel side of a unit cell and NY is the number along a y-parallel side then the

size of the inversion is 3[(NX) (NY)-I] square.

The use of planes of structural symmetry to reduce the amount of unit cell

structure that must be analyzed complicates matters somewhat. Strain cases

representing symmetric loads (with respect to planes of symmetry) do not reduce to

the same set (or number) of unconstrained displacement equations as the shear

strain cases which represent asymmetric loadings. Thus, the computational effort

is approximately doubled. Despite this increased effort, it is still advantageous

to use structural symmetry when it exists.

26



7. COMPUTER PROGRAM DESCRIPTIQN

A computer code, based on the foregoing analysis, has been written in Fortran 77

language for use on the CDC 6600 computer at NASA Langley Research Center's

central computing facility. A listing for the program is given in Appendix I.

The core of the program consists of a set of three nested do loops. The outer do

loop computes the stiffness matrix for each elastically different subcell in the

finite element model of the unit cell, transforms it into the global unit cell

coordinates, and inserts each element of the subcell stiffness matrix into its

proper location in the larger unit cell stiffness matrix.

The intermediate do loop ranges over each material within the subcell. In other

words, the subcell stiffness matrix is assembled, one material at a time, and the

contribution that each material makes to the stiffness matrix is computed and

added into the subcell stiffness matrix, which maintains a running total of each

material contribution, in the same manner that the unit cell stiffness matrix

consists, at any point in time, of a running total of the different subcell

contributions.

The third and inner most do loop ranges over each integration point in the

integration grid. The contribution of one material to one subcell stiffness

matrix represents the sum of its contributions at each integration point. As the

fiber directions and constituent material volumes are read in, for any integration

point, the contribution to the appropriate subcell stiffness matrix is calculated

and added into the proper matrix locations. As the last constituent material

associated with the last integration point for the last subcell is read into the

program the last contribution to the unit cell stiffness matrix is put into place

and the unconstrained stiffness matrix of the unit cell is completed. There is no

further input data required. The six unit strain problems are solved in sequence
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and the mean stresses corresponding to each unit strain tabulated. The elastic

constants for the composite are then computed and displayed.

Prior to entering the nested do loops the necessary information to characterize

the constituent materials, set the number of master subcells, size the unit cell,

divide the unit cell into subcell compartments, and fill each compartment with a

properly transformed subcell, must be specified. The subcells are sized in the

outermost portion of the nested do loops. The input data details are discussed in

Appendix II. Appendix III contains an interactive sample problem input and output

for a simple woven composite architecture. Figure 15 contains a flow chart of the

program.

The math subroutines that invert matrices and solve simultaneous equations (MATOPS

and GELIM) are not included in the listing. Similar subroutines are included in

any math library package.
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8. SIMPLE APPLICATIONS

In this section fabric analysis is applied to a set of problems that are not

representative of any actual fabric reinforced composite, but are simple enough to

illustrate some basic features of the analysis. The simplest possible application

is the prediction of the stiffness of a bulk orthotropic material, for example, a

graphite/epoxy with the following elastic properties:

Ell = 20.0 msi VI2 = VI3 = 0.25

E22 = E33 = 1.5 msi V23 = 0.35 (8.1)

GI2 = GI3 = G23 = 0.7 msi

where planes perpendicular to the fiber axis are planes of transverse isotropy.

The fiber direction is denoted by I, the direction perpendicular to the fiber (in

the plane of the laminate) by 2, and the ply thickness direction by 3.

The unit cell of this reinforcing geometry can be any size of rectangular prism

with a minimum side length several orders of magnitude larger than the average

fiber diameter. This unit cell can be assembled from a single subcell which

contains only one material, the graphite/epoxy composite with fibers paralleling

the x-axis. The subcell is the unit cell. The simplest 3-D integration grid and

integration scheme is adequate in this case. Let the eight corners of the subcell

be the integration points. The subcell stiffness matrix generated by integration

represents a homogeneous material uniformly distributed throughout the subcell.

The unit cell stiffness matrix is identical to the subcell stiffness matrix.

Subsequent calculation of the composite stiffness coefficients and E,V,G values

yields the same numbers as the material property input. Analyzing the same

material with the fibers at an angle to (rather than parallel to) the global x-
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axis gives

data.

the composite moduli in a different reference system from the input

8.1

The effect of +45 °

be evaluated with

Fiber Path Variation

zigzag (_) or rickrack fiber paths on the moduli can also

this analysis. For example, consider the 2-D rickrack

reinforcing pattern of Figure 16A. The unit cell shown contains one repeat of

this geometry. The unit cell can be subdivided into two subcells (I and II) with

constant fiber direction in each (Figure 16B). One subcell can be generated from

the other via a 180 ° rotation about the z-axis. Thus only one master subcell and

a pair of rigid transformations are required to orient fibers properly in the unit

cell. Using the previous unidirectional composite properties (Equation 8.1), the

analysis of the unit cell gives the following results:

= = _xzEx = 1.89 msi, Vy z 0.18, Gy z 0.70 msi, ,x = 0

E = 1.50 msi, V 0.35, G 2.04 msi, _xz,yy xz xz

-- -- _xzEz = ].89 msi, Vxy 0.23, Gxy 0.70 msi, ,z = 0

where the coefficient of mutual influence (_ij,k) designates shear strain in the

ij plane as a result of a unit normal strain in the k direction. The comparable

results for unidirectional material oriented at an angle of ±45 ° to the x-axis (in

the xy-plane) without the rickrack pattern are:

E = 1.89 msi, V = 0.18, G
x yz yz

E = 1.50 msi, V = 0.35, G
y xz xz

E = 1.89 msi, V = 0.23, G
z xy xy

= 0.70 msi, _xz,x = 0.81

= 1.40 msi, _xz,y = 0.36

= 0.70 msi, _xz,z = 0.81
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The Young's moduli and Poisson's ratios of the rickrack pattern are the same as

the skewed unidirectional material. However, the G shear modulus and all of the
xz

non-zero coefficients of mutual influence differ.

Neither of these examples shows how multiple materials can be mixed in the same

subelement. The previous example problem could have been approached in this way;

i.e., the unit cell could have been modeled by a single subcell containing both

fiber angles in the rickrack pattern (see Figure 16C). If half of the subcell

contained only + 45 ° material and the other half -45 ° material then (using the

same eight corner integration points) the volume of material associated with the

four integration points on the x = 0 plane would consist only of +45 ° material

while integration points on the x = A plane would have only -45 ° material

associated with them. The complete subcell stiffness matrix includes all eight

integration points and both + 45 ° and -45 ° material. Resulting moduli predictions

are identical to the previous model based on two homogeneous subcells per unit

cell.

Three-dimensional rickrack reinforcements, shown in Figure 17A, can be analyzed

almost as easily as 2-D ones. A unit cell of this fiber reinforcing pattern is

shown in Figure 17B. Solid lines indicate fiber direction in an entire subcell.

All four subcells (Figure 17C) are rigid transformations of each other. Variation

in Young's modulus of this material with the z-axis fiber orientation angle (for

the same graphite/epoxy) is shown in Figure 18. This figure also contains a plot

of Young's moduli for the 2-D rickrack pattern of Figure 16. Internal constraints

from adjacent subcells increase the 3-D moduli very slightly over the 2-D case.

8.2 Void Analysis

Consider another example problem in which the material is homogeneous and

isotropic except for a periodic array of continuous, parallel, square holes. The
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major axis of these holes is parallel to the z-axis, as shown in Figure 19A. One

unit cell of this microgeometry consists of a cube of material with one hole in

its center (Figure 19B). Since there is no variation of geometry along the axis

of the hole, there is no need for more than one subelement in that direction. The

simplest conceivable representation of hole geometry is a single subelement with

the volume integration for it's stiffness matrix extending only over the volume of

the actual material present. With the eight corners as integration points, Figure

20 shows the Young's modulus and shear modulus predictions as a function of hole

volume fraction for an epoxy unit cell. Similar estimates may be obtained using

3x3x2 and 4x4x2 integration grids depicted in Figure 21. However, the single

eight-node subcell is not capable of yielding better stiffness estimates than the

rule of mixtures (for elements in parallel) for this example, irrespective of

integration grid refinements.

Now consider a model of the same microstructure with more subcells of smaller

size. The unit cell model in Figure 22 contains 12 subcells. However, only two

are elastically different, the square subcells at the four corners and the eight

rectangular ones between the corners. Stiffness estimates for this model are

shown in Figure 23. Both 2x2x2 and 3x3x2 grids are used for subcell stiffness

integrations. There is a small difference in results for the 2x2x2 and 3x3x2

grids but there is no major improvement in accuracy with this or further grid

refinement. However, a large improvement has resulted from the use of smaller,

more numerous subelements (CompareFigures 20 and 23). The standard of comparison

in Figure 23 is the strength of materials calculation for stretching and bending

of two orthogonal sets of parallel plates, welded together at their lines of

intersection. This model is not an exact solution but is very accurate for hole

volume fractions of more than 50%.
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For high void fractions, moduli prediction of the fabric analysis and predictions

of the strengths of materials model are generally in agreement; except for the G
xy

shear modulus case. These predictions differ by almost a constant factor of 2.

The reason for this difference is that the G shear modulus is dependent on
xy

bending stiffness of the thin cellular walls between the square holes. The eight

node hexahedral element used to represent these cell walls is deficient in its

ability to model linear bending strain distributions.
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9. WOVEN FABRIC APPLICATIONS

This section considers application of the preceeding analysis to woven fabric

microgeometry. First consider the most common weave construction, plain weave.

Idealizing the geometry is traditionally the first step in analyzing any

structure. For fabrics this usually implies replacing tow bundles with elastic

tubes of constant cross section. In textile mechanics these interwoven tubes are

referred to as channel models (Ref. 18). In composite mechanics these tubes are

assumed to consist of unidirectional orthotropic material with a plane of isotropy

normal to the principal axis of each tube. Figure 24A contains one such

idealization in which tow cross-sections are assumed to have a diamond shape.

Dissimilar materials in the unit cell are separated by a series of flat planar

areas. As mentioned previously, if warp and fili materials and their geometries

are identical, and if a rule of four subcells per yarn crossover is adopted, then

only one master subcell plus 16 transformations of that subcell are required to

model the unit cell, (Figure 24B, C). If a 2x2x2 integration grid is superimposed

on the idealized subcell microgeometry, then the small volumes of dissimilar

materials associated with each integration point can be visualized, characterized,

and tabulated from geometric considerations (Figures 25 and Table 2). Table 2

the two spherical fiber angles (_i,_2) and eight material volumepresents

fractions (Ul, D2,"" • D,8 ) associated with each octant of volume surrounding each

integration point for each of the three constituent materials, namely, the

unidirectional warp composite (I), the unidirectional fill composite (2), and the

bulk matrix (3). The subscripts 1 through 8 on the material volume fractions

refer to the following x,y,z octants respectively: ++÷, ++-, +-+, +--, -++, -+-, -

-+, and as shown in Figure 12.

The volume fraction of impregnated tow in this composite is 50%. The other 50% is
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interstitial bulk matrix. If elastic properties of the transversely isotopic tow

material have the same values as the unidirectional material of the previous

section (Equation 8.1) and the bulk matrix properties are

E = 0.5 msi, G = 0.185 msi, V = 0.35, (9.1)

then the analytical predictions of the fabric reinforced composite properties are:

E = E = 4.40 msi , E = 1.14 msi
x y z

G = G = 0.48 msi , G = 0.42 msi
yz xz xy

V = V = 0.425 , V = 0.132
yz xz xy

If this same graphite/epoxy composite was unwoven unidirectional material in the

form of a thick blended 0/90 laminate with 50% bulk matrix material between the

plies, the laminate properties would be:

E = E = 5.67 msi , E = 1.02 msi
x y z

G = G = 0.29 msi , G = 0.44 msi
yx xz xy

V = V = 0.422 , V = 0.051
yz xz xy

The weave microgeometry is thus responsible for an approximate 22% reduction in

Young's moduli E and E , but a much smaller reduction in the in-plane shear
x y

moduli.

This sample problem serves only as an example of the application of fabric

analysis to a reinforcing geometry resembling a plain weave microstructure. A

true fabric microstructure has more complex tow paths and tow cross-sectional

variations than this example. However, the analysis is not limited by any of

these geometric complications, as the next example illustrates.

9.1 Realistic Plain Weave Model

Now consider the microgeometry of Figure 26 for a graphite/epoxy, plain weave,

reinforced composite which is magnified approximately 70X. This laminate is an 8-
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ply composite consisting of T-300 untwisted tow yarns at 18 ends and 18 picks per

inch. The matrix designation is 5208; average thickness per ply is 0.011 inches;

fiber volume fraction is 66.7%. Closer examination of Figure 26 reveals that warp

and fill fibers have a maximum angle of approximately ± 6 ° with the middle plane

of the fabric as they undulate over and under one another. Using the concept of a

somewhat irregular unit cell and subcell of Figure 9 with a 2x2x2 integration

network (the corners of the subcell are the integration points), Table 3 contains

all necessary remaining geometric input data for computation of the subcell

stiffness matrix. As before, _i designates the fraction of volume associated with

the i th octant of volume (surrounding an integration point) that is occupied by

one of the three constituent materials. Octants containing both warp and fill

tows are considered to contain two different orthotropic materials. Bulk matrix

is the third material.

Subcell cross-section sketches and 3-D yarn bundle models, based on

photomicrographs, assist in establishing the _. quantities. For simplicity, fiber
1

angles are obtained from observed values at integration points rather than from

averages over neighborhoods of the integration points. There is no attempt in

this example to force reinforcing geometry to coincide with any idealized model.

The fiber volume fraction within a tow bundle is taken to be 75% based on

electronic scanning of similar composite photomicrographs using only those areas

within the tow cross sections. The void content of the composite is assumed to be

zero. The volume fraction of fiber in the tow (75%), times the volume fraction of

impregnated tow within the composite must equal the total fiber volume fraction of

64%.
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The volume fraction of impregnated tow is thus 85% of the total volume.* The

volume fraction of the composite occupied by unreinforced matrix material must

therefore be 15%. This is necessary to arrive at an overall composite fiber

volume fraction of 64% which is the approximate average measured value for all of

the test materials considered in this section (as determined by acid digestion).

There is some difficulty associated with the assignment of principal moduli to the

impregnated tow material. Neither existing test data or micromechanics provides

reliable estimates. Test data from unidirectional material seldom extends into

the 75% fiber volume fraction range. Also, unidirectional test data does not

include the inevitable degradation to tow properties that result from the weaving

and related fabric forming processes. The latter objection also applies to

micromechanics estimates of moduli. A semi-empirical application of the rule of

mixtures (for elements in parallel) described subsequently seems to provide the

best basis for establishing E 1 of the impregnated tows.

In Ref. 19 twelve different unidirectional graphite composite materials were

characterized experimentally. Their measured longitudinal moduli were lower in

eleven out of twelve cases from the rule of mixtures prediction. The mixtures

rule overestimated measured moduli (E l ) by almost 10% based on an average of the

twelve materials. This shortfall in the measured E 1 can be attributed in part to

fiber loss, misalignment, and breakage in the unidirectional prepregging and

curing processes. The weaving process is considerably more damaging than the

unidirectional prepregging process.

*For analysis purposes 64% fiber volume fraction was used rather than 66.7% because it was desired to have a common

basis of comparison for each of the different weaves in this corrdatiort
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Thus it seems reasonable to anticipate a greater reduction in E 1 due to weaving

than unidirectional tow placement. Another 10% reduction in E 1 might be

appropriate to account for weaving factors. Therefore, if the fiber volume

fraction of a graphite/epoxy unidirectional material, with a 20 msi longitudinal

modulus, were increased from 65% to 75% the rule of mixtures would predict about a

15% longitudinal modulus increase. However, the weaving reduction factor would

decrease this gain to only 5% and the resulting longitudinal modulus of the

impregnated tow material within the weave would be about 21 msi. A truly reliable

alternative to such an estimate would be an experimental study that measured

impregnated tow modulus before and after weaving. This was beyond the scope of

this program.

The weaving process often includes beaming, sizing, weaving, scouring, drying and

packaging. Each of these steps abrades, damages and misaligns the reinforcing

fibers to some degree. The floor of any weaving room is a testament to the

degradation and loss of reinforcing material. Also, T300 fibers showed more

evidence of property reduction as a result of the unidirectional prepregging

process than most of the graphite fibers studied in Ref. 19.

Only the longitudinal modulus of the tow composite is assumed to be significantly

degraded by weaving. Micromechanics considerations indicate a 15% increase in the

transverse Young's modulus and shear moduli are appropriate to a fiber volume

fraction increase from 65% to 75%. The principal Poisson's ratios should decrease

a few percent as the fiber content increases.

The principal moduli values for the impregnated tow composite are thus estimated

to be (using the Rule of Mixtures for elements in series and parallel):

38



E1 = 21.0 msi

E2 = E3 = 1.7 msi

GI2 = 0.8 msi

VI2 = 0.23

V23 I 0.30

G23 = 0.8 msi

(9.2)

Matrix properties are equivalent to those in the prior example (Equation 9.1).

The fabric analysis predictions are given in Table 4 along with the experimental

data. Experimental values and photomicrographs were provided by NASA Langley

Research Center and were previously published in Reference 12.

The comparison between analysis and experiment is generally good. The small

differences in Young's moduli would indicate that the assumptions regarding tow

property reduction resulting from the weaving processes were reasonable. The

experimental difference between the moduli in the warp and fill direction could be

accounted for in two ways. There are possibly some small variations in undulation

angles between warp and fill tows that are not in evidence in the small area

samples that were subject to microscopic examination. Also, there is ample reason

to believe that property damage due to weaving is not evenly distributed between

the warp and fill tows.

There is a major discrepancy between the analytical and measured in-plane

Poisson's ratio. The experimental value is suspect in this case because it is

much greater than other analytical predictions, similar graphite/epoxy data, and

0/90 cross ply analysis and data.

The reduction in the principal in-plane moduli due to the weave microstructure is

about 5% based on a cross-ply unidirectional laminate with the same fiber volume.

Consider the possible loss of accuracy resulting from doubling the subcell x,y
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side lengths while reducing the number of subcells in the unit cell from 16 to 4.

One subcell then represents one warp/fill yarn crossover. This increases the

maximum subcell side length ratio from 5/4 to 5/2, which is not excessive for

finite element analysis. If a 3x3x2 integration grid is applied to the subcell

then all the fiber angle and material volume fraction data associated with each

integration point carries over unchanged from the 16 subcell model to the 4

subcell model.

Use of this larger subcell leads to the following plain weave fabric reinforced

composite moduli predictions:

Ex, EY

Ez

Gyz'Gxz

G
xy

Small Subcell (msi)

9.25

1.65

0.721

0.699

Large Subcel! (msi)

9.22

1.65

0.720

0.744

Small Subcell Large Subcell

Iv IVy z,Vxz 0. 329 0. 333

Vxy 0. 031 0. 028

Results from the two models are almost identical.

9.2 Other Weaves

Using the same fiber and matrix, NASA has made composite laminates in four weave

patterns: plain, 2/2 Oxford, five harness satin and eight harness satin. All

weaves have 18 ends and 18 picks per inch. Figure 27 shows photomicrographs of

the latter three weave geometries after lamination. Different weave patterns
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yield slight variations in fiber undulation angles. The maximum angle that satin

weave fibers make with the plane of the fabric is approximately one degree smaller

than the maximum plain weave fiber angle. Oxford weave angles are smaller than

plain weave angles but larger than satin weave angles. Fiber volume fractions of

the four weaves also vary slightly. In the analysis a fiber volume fraction of

64% was maintained for all weaves.

Figure 28 shows an Oxford weave unit cell and three possible subdivisions. The

first possibility (Figure 28C), with four subcells per yarn crossing, requires 32

transformations of two master subcells to model the unit cell. This model leads

to a matrix inversion of dimension 93 square; probably larger than warranted. The

second possibility (Figure 28D), with two subcells per yarn crossover, leads to a

matrix inversion of order 45. Only 16 transformations of a single master subcell

are required with this model. A third possible model is shown in Figure 28E. It

is a coarser subdivision than either previous model. Each subcell represents one

warp/fill tow crossover. All three models are shown to illustrate the point that

many variations are possible with this type of analysis. The fabric reinforced

composite moduli prediction, based on the medium subcell division model, using a

2x3x2 integration grid, are given in Table 4.

Comparison of the Oxford weave and plain weave moduli predictions shows a slightly

greater Young's moduli for the Oxford weave. This reflects the differences in

yarn crossover angles and crossover frequency. Fiber volume fraction for the

Oxford weave was 64% for the analysis and 62% for the experiment.

Consider the five harness satin weave geometry shown in the photomicrograph of

Figure 27 and the sketch of Figure 29. If a subcell division of the unit cell is

based on a rule of four subcells per yarn crossing then the largest matrix

inversion is of order 297. Use of one subcell per crossover reduces this
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dimension to 72. Thus, the subcell division shown in Figure 29C was adopted. Two

different master subcell stiffness matrices are required for this model. A 3x3x2

integration grid is used on each subcell. Matrix and unidirectional properties

used are equivalent to those used in the Oxford and plain weave models. Analytical

and experimental moduli are given in Table 4.

Analysis again predicts the trend toward higher in-plane moduli with decreasing

density of yarn undulations. The frequency of undulations has little effect on

shear moduli or Poisson's ratios. Both analytical and experimental fabric volume

fractions of the five-harness satin weave are 64%.

The in-plane Young's moduli correlation is not as good as was obtained on the

plain weave or Oxford weave. This raises a question concerning the use of a

constant unidirectional tow composite property reduction factor to account for tow

damage in weaving. It would appear from the correlation that the amount of tow

damage is a function of the weave style. The lower than expected analytical

Young's moduli for the satin weave, with relatively few warp/fill crossovers per

unit of fabric area, indicates a possible lower level of tow damage than was

evidenced in the plain or Oxford weave forming process with many more warp/fill

crossovers. The beat up process following pick yarn insertion could be more ol a

localized damage phenomenon in the vicinity of warp/fill crossovers than an

overall damage mechanism.

i

The eight harness satin weave is shown in the photomicrograph of Figure 27 and

sketched in Figure 30. One unit cell is shown in Figure 30B. Using four subcells

per yarn crossing leads to a reduced stiffness matrix of 765 square. One subcell

per yarn crossing gives a stiffness matrix of order 189. In addition, three

different master subcells are required. Thus, it is of interest to consider a

42



cruder single subcell that includes four yarn crossovers. Only two different

master subcells require consideration with such a model. This subdivision of the

unit cell is shown in Figure 30C. The unit cell reduced stiffness matrix is of

order 45. Use of the previous constituent material properties with the 5x5x2

integration grid of Figure 30D yields the results given in Table 4.

The lower than expected analytical Young's moduli in the plane of the fabric for

the eight harness satin reflects the same trend as was observed for the five

harness satin and again suggests less weave damage with fewer warp/fill

crossovers.

In general the correlation between analysis and experiment was satisfactory for

most engineering applications. A linearly varying tow property reduction factor

based upon the number of warp/fill crossovers per inch of tow would have very much

improved the correlation. However, this correction should be verified more

thoroghly before adoption.

In summary, a general rule of "four subcells per yarn crossover with crude

integration schemes and networks" is adequate for modeling conventional woven

fabric reinforcing geometries. Larger subcells can be used with little compromise

in accuracy if corresponding refinements are made in the integration network. One

subcell per ply in the thickness direction seems adequate under the same

circumstances.
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i0. BRAIDED FABRIC APPLICATIONS

A variety of industrial braided fabrics have application as composite reinforcing

materials. Their microgeometries are often similar to woven fabrics. The

simplest 2-D braids (Figure 31A) are analogous to skewed plain weaves.

One important braid characteristic is braid angle, i.e., the average angle (in the

plane of the fabric) that yarns (tows) make with the fabric output (machine take-

up) direction. A braid angle of ± 45 ° corresponds to an orthogonal plain weave

(although some microgeometry differences may result from differences in tow

handling). For analytical purposes ± 45 ° plain braid and plain weave

mlcrogeometry can be considered equivalent. Furthermore, when the braiding tows

are identical and have identical spacing, it is possible to isolate a unit cell

that is a rectangular prism (Figure 31B). This particular unit cell can be

subdivided into four subcells (Figure 31D), each of which can be obtained from the

other by various coordinate transformations. Thus, it is necessary to obtain a

stiffness matrix for only one master subcell in order to model the unit cell. The

stiffness matrix for the subcell is obtained by the same method used for weaves.

First, a 3x3x2 integration grid is superimposed on the subcell volume. Fractional

values of octant volumes (surrounding each integration point) containing the three

constituent materials (two sets of impregnated braid tows and bulk matrix

insterstices) are given in Table 5. Two spherical angles describing local fiber

directions at each of the 18 integration points are also tabulated. This data

corresponds to a braid angle of _ 45 O. The unidirectional composite properties

are given in equation (9.2). Bulk matrix properties are given in equation (9.1).

Moduli predictions for the 64% fiber volume fraction braid and for the 64% fiber

volume fraction plain weave from Section 9. should be close to equivalent after

the plain weave moduli are transformed into the coordinate system of the braid.
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The predicted moduli are:

Ex,Ey (msi)

E (msi)z

G (msi)
xy

V
xy

i 45° Braid

2.48

1.66

4.57

0.73

Transformed

Plain Weave

2.44

1.65

4.49

0.51

Small differences in the descriptions of the microgeometry of the master subcells

would account for the small moduli differences. The reason for the large

difference in the Poisson's ratio of the two models is not clear.

Figure 32 contains a plot of variation in braid moduli as a function of braid

angle. Reinforced and unreinforced material volumes associated with integration

points are assumed to remain constant as the braid angle varies. Actually, some

of the braid angles are not possible to achieve without "jamming" of the two braid

tow systems. Distortions of local geometry begin as the braid angle approaches

these limits. Braid moduli plots are qualitatively similar to the corresponding

plots for symmetric angle-ply laminates made from unidirectional materials.

Braids with different sets of braid tows may be analyzed by the same procedure,

but more than one master subcell is needed to build the unit cell. Different tow

spacings in the two sets of braided tows would present a greater modelling

problem.

10.1Triaxial Braids

A triaxial braid reinforced composite, as shown in Figure 33, consists of three

sets of tows, intertwined together. Besides the pair of conventional braider tows
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the 0° or longitudinal "stuffer" tows are introduced into the 2-D braid through a

set of stationary tow carriers around which the braider carriers pass during the

fabric formation. The 0° tows remain essentially straight in the final fabric and

lie in the machine take up direction. The braid pattern must be modified to make

room for the 0° tows. Instead of each braid tow intertwining over and under each

braid tow that it crosses, each braid tow is allowed to float alternately over and

under each pair of braid tows it crosses. This relates the braid to a 2/2 twill

weave in the same way that the previous braid relates to a plain weave. The

triaxial braid introduces an additional 0° tow size parameter of choice. For the

particular triaxial braid to be modeled the tows were all made from AS-4 graphite

fibers. The braid angle was ± 70° . The braider tows contained 6000 strands per

tow. The 0° longitudinal tows contained 18,000 strands. Both tows were untwisted.

The composite fiber volume fraction was 52% as measured by acid digestion. The

matrix matrial was Shell 1895 epoxy.

Figure 34 shows the smallest rectangular unit cell for the triaxial braid. It

contains two 0° stuffer tows and portions of four tows from each of the two sets of

±70 ° braider tows. The spacing of the stuffer tows establish the width of the unit

cell. The stuffer tow spacing was 4.4 tows per inch making the unit cell (2/4.4)

= 0.455 inches wide. The braid angle of ±70 ° established the unit cell height of

(I/2) (0.455)/(tan 70 ° ) = 0.166 inches. The thickness per ply was 0.0275 inches.

The laminate was five plies thick. Figure 35 shows two photomicrographs of the

actual material which was made by the Boeing Co. and tested at NASA Langley

Research Center (Ref. 20). The braider tows had an average crossover angle of ±9 ° .

The unit cell was divided into eight subcells, as shown in Figure 34. The eight

subcells reduce to two master subcells whose stiffness matrices were assembled

using a 2x2x2 integration network. The fiber volume fraction within a tow bundle
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was taken to be 75%. Thus, the volume of unidirectional tow composite within the

unit cell was (100)(52/75)= 70%. The remaining 30% is bulk interstitial or

unreinforced matrix material. The same elastic properties that were attributed to

the bulk matrix and the unidirectional tow composite in the prior braid analysis

were applied to the triaxial braid analysis. The percentages of fiber in the

three different tow directions were almost equal. Since the braid angle was close

to 60 ° it is expected that the resulting composite will have close to quasi-

isotropic laminate properties for the same volume fraction of the same fiber. The

principal triaxial composite moduli from both the fabric analysis and test are,

with reference to the coordinate system of Figure 34:

E x (msi)

Ey (msi)

E z (msi)

Gxy (msi)

Vxy

Vyx

Analysis Test

7.41

6.32

1.75

1.80

0.214

0.169

7.03

6.31

N.A.

N.A.

0.190

0. 183

The analysis and test are in good agreement, particularly as relates to measured

strains in a tow diection.
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Ii. KNITTED FABRIC APPLICATIONS

The foregoing braided and woven fabric composite analysis proceedures also apply

to composites with knitted reinforcement. Low fiber content and the absence of

long fiber floats in the microgeometry render this form of reinforcement

inefficient for highly-loaded structural applications. However, knitting is used

in nonstructural applications because of its ability to conform to complex

surfaces prior to curing and because of its availability in tubular form.

One of the most common knit patterns is the Jersey (plain) knit. Jersey

microgeometry and a rectangular unit cell (Ref. 21) are shown in Figure 5. This

pattern resembles some forms of chain link fencing which have almost the same unit

cell. One possible subdivision of the unit cell into subcells is shown in Figure

36. This subdivision is convenient because all four subcells can be formed from

transformations of one master subcell. A 2x2x2 integration network serves to form

the stiffness matrix for the master subcell. Spherical fiber direction angles and

composite and bulk matrix volume fractions associated with each integration point

are given in Table 6. The fiber volume fraction within the impregnated tow is

assumed to be 75% and the volume fraction of unidirectional material within the

composite is assumed to be 33.3%. Thus, the overall fiber volume fraction of the

composite is (0.75 x 0.33 x i00) = 25% and interstitial or unreinforced matrix

volume fraction is 66.7%. Unidirectional composite and matrix constituent

properties are the same as the previous braided fabric constituent properties.

The predicted knit fabric reinforced composite moduli are as follows:

E = 1.70 msi , V = 0.33 , G = 0.52 msi
x yz yz

E = 2.16 msi , V = 0.27 , G _ 0.41 msi
y xz xz

E = 1.02 msi , V = 0.32 , G = 0.74 msi
z xy xy
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The in-plane composite Young,s moduli are lower

unidirectional material with the same fiber content.

and Poisson's ratio are higher for the knit.

than (0/90) laminates of

The in-plane shear modulus

In braids, weaves, and knits prestress can distort microgeometry within the unit

cell and cause large changes in moduli of the composite material. Prestretching

of knits in the layup process is almost unavoidable. This phenomena is one reason

for the absence of reliable test data on knits. Figure 37 shows the effects of

prestretching or elongating the unit cell. As in the case of braids, tow

compaction may prevent some of these microgeometries from being achievable.
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12. CONCLUDING REM_d_KS

This report describes a method for applying general 3-D finite element analysis to

predict all of the linear elastic constants of fabric reinforced composite

laminates. The analysis presumes the reinforcing microstructure can be condensed

into a small repeating rectangular unit cell. The generic composite structure is

presumed to consist of an infinite array of these unit cells joined together at

matching surfaces. The analysis of a single unit cell is sufficient to predict

all the global elastic properties of the composite. The approach avoids some of

the difficulties associated with matching of finite element node point locations

and element boundaries to internal material boundaries. Partially reinforced

elements are used, along with the general energy formula for their stiffness

matrix. This formula accounts for material property variations within the

element. This approach should work if element dimensions are small with respect

to the tow cross-sectional dimensions and interstitial matrix volume dimensions.

This report shows that for many reinforcing geometries it is not essential (within

the requirements of engineering accuracy) that the element size be that small.

With most common reinforcing weaves and with the eight-node hexahedral element, a

general rule for sizing of elements is one element per ply in the thickness

direction and one to four elements per tow crossover. This rule applies to braids

as well. Its application to knits is suggested but unverified.

Since most general purpose finite element codes are awkward to use with the

boundary conditions associated with moduli prediction, a special purpose computer

code was written to facilitate application to these problems. This code is much

quicker and easier to use than general finite element codes. Appendices I, II and

III contain a listing, discussion of input data and sample problem for this

Fortran code.
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One advantage to this analysis is that it easily adapts to most forms of

reinforcing microgeometry. The method does not require difficult logic or

multiple option choices and enables the calculation of the all 3-D elastic

contants. Hence, this method is useful for estimating material property inputs

required of impact damageanalysis codes. Another advantage of this analysis is

that it remains within the scope of finite elements, which is familair to many

engineers. No depth of knowledge in textile structures is required.

Examples of application of this analysis to weaves, braids and knits are included

to familiarize readers with fabric microgeometry and modeling of yarn

constructions, and to impart some appreciation for the effects of varying these

construction parameters. It is possible, with this code, to generate a catalogue

of moduli predictions based on microgeometry and constituent property variations.

However, the goal of this report is simply to show that reinforced composite

microgeometry is amenable to routine structural analysis and that this analysis is

useful in the search for impact damageresistant composite designs.

The analytical predictions of fabric reinforced composite moduli have been

compared to test data for several weave and braid reinforced composite laminates.

The predictions are largely within the desired range of accuracy required of most

materials engineering applications.

If a laminate consists of several different plies of different fabrics then it is

necessary to apply the fabric reinforced composite analysis to each different

fabric. This ply level analysis is followed by a conventional laminate analysis

in order to obtain the elastic properties of the complete laminate. Laminates

that are made from many plies of the same fabric reinforcement, oriented at

different angles with respect to each other require a single fabric reinforced

composite analysis followed by a conventional laminate analysis. Thin laminate
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response may only be approximated using this analysis. Corrections may be

necessary to account for free surface effects and possible single ply bending and

stretching/bending coupling effects.

Historically very few special elements have been developed which contain more than

one material within the elements (except for laminated plate and shell elements).

The potential for new 3-D elements exists within the context of this analysis.

However, this work is beyond the scope of the present effort.
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TABLE I: UNIT CELL CORNER DISPLACEMENTS FOR UNIT STRAIN CASES
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INTEGRATION

POINT

(Fig. 9)

1

2

3

4

5

6

7

8

1

2

3

4

5

7

I, 8

1

2

3
4

5
6
7

8

(Fig. ii)

90 0

90 0

90 6

90 6

90 0

90 0

90 6

90 6

0 6

0 6

0 6

0 6

0 0

0 0

0 0

0 0

O O

O O

O O

O O

O O

O O

O O

O O

i=l

(+++)

0.70

0.16

i=2

(++-)

0

m

0.86

I

_)i (i = 1 - 8)

, . , , ,,i=4 i=5

(+--) (-++)

i=3

(+-+)

0.45

0.24

0.24

0.45

0.31

1.00

0

F

0

i=6

(-+-)

i=7

(--+)

_° o786

l

_2

(Fig. II)

0.14

0

0.14

0.14

0.31

I

1.00

[

0

0.16

0.70

0.14

MATL.

NO.

I

1

I

I

1

1

I

1

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

TABLE 3: PLAIN WEAVE INPUT DATA FROM PHOTOMICROGRAPHS



Ln
O0

WEAVE

Plain

Oxford

5 Harness

Satin

8 Harness

Satin

Ex

(ms i )

9.25

(9.13)

9.33

(9.63)

9.57

(10.05)

I 9.68
'(10.59)
i
i

Ey

(msi)

9.25

(8.83)

9.55

(9.68)

9.57

(10.09)

9.68

(10.35)

Gyz

(msi)

Gxz

(msi)

x,y plane is the plane of the fabric

* Warp Direction

** Fill Direction

*** Thickness Direction

Gxy

(msi)

0.7O

(N.A.)

0.70

(0.77)

, Vyz Vxz Vxy

0.03

(0.ii)

0.04

(0.06)

0.72

(0.76)
/
/

0.72

(0.98)

0.03

(O.O6)

0.03

(0.06)

( ) Experimental Data

(N.A.) Not Available

Table 4: WOVEN FABRIC RESULTS
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%(

INTEGRATION

POINT

1

2

3

4

5

6

7

8

9

I0

ii

12

13

14

15

16

17

18

Integration Points

l)i (i = i-8)

i=3 i=4 F i=5 i=6 i=7
!

(+-+) (+--) I (-++) (-+-) (--+)

i
- 0.9 / - - -

0.4 .... /

- 0.4 - - -

- - - 0.9 -

0.2 - 0.2 - -

- 0.2 I - 0.2 -

- - | - 0,4 -

- - _ 0.9 - 0.8

Subcell

TABLE 5A: BRAID INPUT DATA (MATERIAL i)

I

0.3

O



A

CO I

II i
• M I

r-- 4-
II I

-,-I I

lllillill

O's

• I • I I I - I

0 0 <_,

_T
II 4-

..-I I

llllllll • I • I I I • I
0 0 0

I I

A

ur) +

CO II +

I -M I

II

.,..t

v _ "T
II I

.,-t -,'4 +

IIIIII I • I • I I I I

0 0 O

0

I I I I I I • I

I--I 0

('hi. _'4

I I I • I .. I I I

0 0

I I

_ ,m3' 0

I • I • I I I - I " I I I I

O C) O

I I

A

,n+-) +
II i

-M 4-

I I
C)

• I • I I

r.-I 0

I • I - I I I I I I I

0 0

0
+

C_I "_ r_l ,--'1 I'_

II + I I I . I I I I - I I I I I I I I
--4 + 0 C:_ 0

+-'4 -I- C) O_ 0% U')

II + - I - I I I . I - I I I I I I I I I

-+4 Jr _ 0 C) E)

, i

A

C,I

"M

v

A

_-&
-,.4

v

0 0 _ _ _ _ _ _ _ _ _ _ __ 0 0

, , , l

_ _ _ _ _ _ _ _ 0 _ _ _ _ _ _ _

Z
0
I-4

E_

L_
Z

__ H
Z 0
H 1_

H

E+

v

Z
H

H

¢n

6O



!
I-4

I1

.,-I

.-4

z
O
H
E_

[.9 £-_

Z

Z 0

II I
-,-4 I

v

r- +

II I
•,-I I

IIIIIII1"1"111"11
0 0 0

IIIIII
(_ r-4

I !
0 0

I I I

,oi"
II +

•M I
v

I I IIIIll I

A
ur) +

II +
-M I

II !

lillllll • I I I
o

_P
• I I I I I

o

I I I I I • I
0

I I •
o

IIII IIII

_A
or) +

II I
-,..I +

I I I I • I I I
0

C:_ I I I I I I I I I

II +
•M -l-

v

I I I
,-"4 ,-4

• I I I • I
0 0

IY)
• 1 I I I I I I I

C)

A

II +
•,-I +

I I o
¢n1

i i I • i • i i i i I i I I i
o o

.,-i

_-&
-,4
r,4
v

000 C) 000000000 O 0000

..... , ., ,l , ,,

000000000000000000

___0___

,--1

H

r.'l

v

Z

A

m

S

61



O_
50

INTEGRATION

POINT

(Fig.36B)

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

(Fig. ii)

120

120

120

120

120

120

120

120

O

O

0

0

0

O

O

O

_2

(Fig. Ii)

0

0

-20

-20

0

0

-20

-20

0

0

0

0

5

5

20

20

0

0

0

0

45

45

I00

I00

0

0

0

0

0

0

0

0

i=l

(+++)

0.0

0.4

0.6

_)i (i = 1 - 8)

i=2

(++-)

0.3

0.0

0.7

i=3

(+-+)

0.2

0.I

o 7

i=4

(+--)

0.4

0.0

0.6

i=5

(-++)

I
I -

0.0

0.3

- 0.1

I

-- [ --

0.7

- 0.7

i=6

(-+-)

0.2

i=7

(--+)

0.0

0.3

0.7

i=8

(---)

I

0.1

0.3

0.6

MATL.

NO.

i

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

Integration Grid

TABLE 6: JERSEY KNIT INPUT DATA
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Structural Laminate Fabric
element element element

_\\\\\\\\" i; -7"/.,9_

VJ../_//'JJ_q(,flll//#_

_///////////////I__

Micromechanics
element

FIGURE 1" ROLE OF FABRIC MECHANICS IN COMPOSITE MECHANICS

. L • .............. ' ' . '

]I

Unit Cell Subcells _

Subcell Distribution

FIGURE 2:2 x 2 RIB WEAVE MICROSTRUCTURE
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Unit Cell

(A)
Design Plan

(B)

Unit Cell

(c)

FIGURE 3: PLAIN WEAVE DESIGN PLAN AND UNIT CELLS

Design Plan Unit Cell Unit Cell
(A) (B) (C)

FIGURE 4: TWILL WEAVE DESIGN PLAN AND UNIT CELL
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2 x 2 Warp Rib Weave
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lae
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2-D Braid
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2 x2 Basket Weave

5-D Braid

Jersey Knit
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Tricot Knit

FIGURE 5: UNIT CELLS FOR WEAVES, BRAIDS, AND KNITS
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Stack Bond Brick Plain Weave Stacking

FIGURE 6: UNIT CELL ARRAY

z

I
(O,O,C)

(0,0,0)

FIGURE 7:

(O,B,C)

(A,O,O)

(A,B,C)

(2A,O,O)

m

UNIT CELL CORNER DISPLACEMENT FOR STRAINCASE (i) " Exx =1
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FIGURE 8:

X

IMAGE POINTS ON UPPER AND LOWER SURFACE OF UNIT CELL
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1

5

Material (3)

Material (2)

Material (I)

Subcell

Unit Cell

Subcell Assembly

FIGURE 9: PLAIN WEAVE GEOMETRY
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Integration Point

(O,O,c)

(O,b,c)
(a,b,c,)

,__,_ , ..,_/ i I" " "

,_ I _ (a,b,O)

(0,0,0) (a,O.O)

FIGURE 10: INTEGRATION NE'IWORK FOR THE SUBCELL
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Fiber Direction

Parallel Local Coordinate System
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Global Coordinates of Integration

FIGURE 11: FIBER DIRECTION IN SPHERICAL COORDINATES (q) 1' (I) 2 )
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×

eg tlon P

(A) Volume Associated wlth an Integration Point

A z Associated Volume

Integration.Point _ _ Y

I_.__ I ii /

/ /

I I
(B) Octants of Volume at an Integration Point

FIGURE 12: INTEGRATION GRID GEOMETRY DETAILS
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Transformation
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4

FIGURE 13: REFLECTION ABOUT THE X AXIS
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Transformation

4
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×= ×

y= 7

z=-y

Y

6
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×

FIGURE 14: ROTATION OF 90 ° ABOUT THE X AXIS
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READ: MATERIAL PROPERTIES
UNIT CELL GRID /
SUBCELL LOCUS & TRANSFORM/SYMMETRY CONDITIONS , ,/
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READ:INTEGRATIONPOINTS/
NUMBEROF MATERIALS/

I

]
I

/READ: FIBER DIRECTION
VOLUME O F MATERIAL /

I
!CALCU_TEtD1MATRIX]

I
[ ASSEMBLEIBIMATRIX|

I
[,C?MPUTE[B]T[D] [B] d(vol) I

I
[ INCREMENTIkJ MATRIX]

INCREMENT [K] MATRIX I
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I
[GETNODALDISPLAC_.MENTS/FORCES1

I
[GETAv_._GESTRESSES/MODU',"]

!
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FIGURE 15: FLOW CHART FOR THE COMPUTER CODE
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Unit Cell
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z II1 Unit Cell

/

Subcell I

FIGURE 16: 2-D RICKRACK COMPOSITE GEOMETRY

75



IL II /it /i
I . - _- - .-'--_ - --- I I 1

I /A-//- % - ',,_z/__ ____/_/J__ _\__: ,'!

i _i:_-_ --_" _"i

,.7 \:]/ \;// \;z _ I
IL__ _____',Z_....... _ ....... _ I ,"

CA) Geometry

(B) Unit Cell (C) Subcells

FIGURE 17: 3-D RICKRACK COMPOSITE GEOMETRY
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c Fiber ion

@2

E Z
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3-D
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@2 (degrees)

FIGURE 18: MODULUS OF RICKRACK COMPOSITE
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(A) Vold Geometry

x

i

(B) Unlt Cell

A A

--7-

1

1

FIGURE 19: VOIDED MATERIAL
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Hole Volume Fraction
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G xy Integration Grid

(msi) .15 ____ J

0

0 .2 .4 .6 .8 1.0

Hole Volume Fraction

FIGURE 20: MODULI OF VOIDED MATERIAL BASED ON A SINGLE SUBCELL
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FIGURE 22: TWELVE SUBCELL MODEL
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2x2x2 Integration Grid

3x3x2 Integration Grid

Strength of Material

E
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Ex, Ey

I
.2 .4 ,6 .8 1,0
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Hole Volume Fraction

FIGURE 23: CELLULAR .EPOXY MODULI
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(A) Idealized Unit Cell

y (Warp)

x (Fill)

4

5

(C) Master Subcell

(B) Division of Unit Cell
Into Subcells

FIGURE 24: IDEALIZED PLAIN WEAVE MODEL
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(A) Distribution of Warp Material Only

8

2 rZ

7

1
5

(B) Distribution of Fill Material Only

FIGURE 25: EXPLODED VIEW OF MASTER $UBCELL FROM FIG. 24(C)
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(A) Warp Direction

(B) Filling Direction

.FIGURE26: LAMINATEDPLAINWEAVEPHOTOMICROGRAPHS(70X)
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Oxford Weave - 8 plies

Warp direction

5 Harness Satin Weave - 8 plies

Warp direction

8 Harness Satin Weave - 8 plies

Filling direction

_ "_e - , T-"

FIGURE 27: LAMINATED OXFORD AND SATIN WEAVE PHOTOMICROGRAPHS
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FIGURE 28:2/2 OXFORD WEAVE MODELS
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FIGURE 29: FIVE HARNESS SATIN WEAVE MODEL
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FIGURE 30: EIGHT HARNESS SATIN WEAVE MODEL
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(A)

(B)

FabricPattern _j,/,__ x

UnitCell

2 8

(c)

1 7

Subcell

(D) Subcell Assembly

FIGURE 31" 2-D BRAID MICROGEOMETRY MODEL
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FIGURE 32: VARIATION IN STIFFNESS WITH BRAID ANGLE
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0 ° Stuffer Braiders

FIGURE 33: 2-D TRIAXlAL BRAID
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(A) Unit Cell Y

Mas e IC

(B) t r Su ells

(C) Subcell Assembly

FIGURE 34: 2-D TRIAXlAL BRAID MODEL
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Braider Tow Stuffer Tow

Longitudinal Cross-Section (20x)

Braider Tow Stuffer Tow

• t ,:,r_ • _._i _,_ "';_

Transverse Cross-Section (20x)

FIGURE 35: PHOTOMICROGRAPHS OF TRIAXlAL BRAID
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(A) Unit Cell (B) Subcell

(C) Subcell Assembly

FIGURE 36: JERSEY (PLAIN) KNIT MICROGEOMETRY MODEL
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FIGURE 37: EFFECT OF PRESTRAIN ON JERSEY KNIT COMPOSITE STIFFNESS
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FIGURE 38: SUBCELL COMPARTMENTS OF UNIT CELL CONTAINER
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FIGURE 39: SEQUENCE OF FILLING UNIT CELL COMPARTMENTS
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FIGURE 40: INTEGRATION POINT SEQUENCE
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APPENDIX I

Program Listing-Fortran 5

C

C

C

C

C

C

C

C

C

C

PROGRAM FABNEW (INPUT,OUTPUT,TAPEL=INPUT,TAPE6=OUTPUT)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CC PROGRAM TO COMPUTE THE 3-D ELASTIC MODULI OF CC

CC A UNIT CELL OF FIBER REINFORCED COMPOSITE CC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SPECIFICATION STATEMENTS

REAL MU,MIXYZ,MIYYZ,MIZYZ,MIXXZ,MIYXZ,MIZXZ

REAL MIXXY,MIYXY,MIZXY

REAL MP(6,6),KS(24,24) ,KMOD(24,24),SK(24,24)
DIMENSION KA(7),LC(24) ,VF(8)

DIMENSION PR(6,6),SS(6,6) ,T(6,6),BIG(6,6)

DIMENSION BM(6,24),DB(6,24)

DIMENSION GM(6,9),DG(6,9) ,GDG(9,9)
DIMENSION GB[9,24),BDG(24,9)

PARAMETER (MM=I0,MMM=I00,NNN='216)

DIMENSION PROP(MM,6),DX(M_4),DY(MM),DZ(MM)

DIMENSION NBL(MM,MM),FDX(MM+I),FDY(MM+I)

DIMENSION FB(NNN,7),FS(MMM,7),FT(6,6),TF(6,6)

DIMENSION IP(MMM),WK(M/_M),UVW(NNN,6)

REAL KB(NNN,NNN),KM(MMM,NNN),KN(MM_,MM_)

INTEGER QT,QTR(MM,MM)

LOGICAL LX,LY

BUILT IN MATERIAL PROPERTY DATA

DATA

1

2

3

4

5

DATA

C

(MP(I,I),I=I,6)/30.E6,1.5E6,.25,.35,.7E6,.7E6/,

(MP(2,I),I=I,6)/25.E6,1.5E6,.25,.35,.7E6,.7E6/,

(MP(3,I),I=I,6)/20.E6,1.5E6,.3, .45,.7E6,.7E6/,

(MP(4,I),I=I,6)/10.E6,I.E6,.3,.4,2.E5,2.E5/,

(MP(5,I),I=l,6)/ I.E7,I.E7,.25,.25,4.E6,4.E6/

(MP(6,I),I=I,6)/ .5E6,.LE6,.35,.35,.IS5E6,.185E6/

(IZ,A(I),I=l,7)/lO,6,6,1,6,0,O/

C INITIALIZE VARIABLES

C

ISYM=O

DO i0 I=I,MMM

DO 5 J=l,7

5 FS(I,J)=O.0

DO i0 J=I,MMM

i0 KN(I,J)=O.O

DO 15 I=I,6

DO 15 J=l,6

TF(I,J)=O.O

15 FT(I,J)=O.0

WRITE(6,9100)

READ(5,9030) NM
C

C MATERIAL PROPERTY DATA INPUT

C

DO 18 I=I,NM

WRITE(6,9180)
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READ (5,9030) M

IF(M.GT. 6) THEN

WRITE (6,9120)

READ (5,9010) PROP (I, i)

WRITE (6,9130)

READ (5,9010) PROP(I, 2)

WRITE (6,9140)

READ(5,9010) PROP(I, 3)

WRITE (6,9150)

READ(5,9010) PROP(I, 4)

WRITE (6,9160)

READ(5,9010) PROP(I, 5)
WRITE (6,9170)

READ (5,9010) PROP(I, 6)
END IF

IF(M.LE.6) THEN

DO 17 J=l, 6

17 PROP (I, J) =MP (M, J)
END IF

18 CONTINUE

WRITE (6,9190)

DO 19 I=I,NM

19 WRITE (6,9020)

WRITE (6,9110)

READ (5,9030)

WRITE (6,9080)

READ(5,9030) NBX

WRITE (6,9090)

READ (5,9030) NBY

NP= ((NBY+I) * (NBX+I)) *6

IJ=3* (NBX*NBY-I)

WRITE (6,9470)

READ(5,9000) C

WRITE(6,9440)

READ(5,9000) XL

FDX (i) =0.0

FDX (NBX+I) =I00.0
IF(NBX.LE.I) GO TO 25

DO 22 I=I,NBX-I

WRITE (6,9460) I+l

22 READ(5,9000) FDXII+I)

25 WRITE (6,9450)

READ (5,9000) YL

FDY (i] =0.0

FDY (NBY+I) =i00.0

IF(NBY.LE. i) GO TO 35

DO 30 I=I,NBY-I

WRITE (6,9460) I+l

30 READ(5,9000) FDY(I+I)

35 DO 50 I=I,NP

DO 40 J=l,7

40 FB(I,J) =0.0

DO 50 J=I,NP

50 KB(I,J)=0.0

DO 70 I=I,NBX

DO 70 J=I,NBY

WRITE (6,9060) I,J

READ (5,9030) NBL(I, J)

WRITE (6,9070) I,J

READ(5,9030) QTR(I, J)

(PROP(I,J),J=l,6)

NB
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70 CONTINUE

WRITE(6,9050)

READ (5,9040) LX

IF(LX) IJ=IJ+(NBY+I)

WRITE (6,9055)

READ(5,9040) LY

IF(LY) IJ=IJ+(NBX+I)
ICOUNT=0

35O CONTINUE

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C OUTER DO LOOP ON NO. OF SUBCELLS IN UNIT CELL BEGINS C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C

C

INPUT BLOCK GRID GEOMETRY

WRITE(6,9300]

WRITE(6,9200)

WRITE(6,9300)

WRITE(6,9210)

READ(5,9000) A
AA=0.5*A

WRITE(6,9240)

READ(5,9030) NX

DX(i) =0.0

DX(NX)=A

IF (NX.LE.2) GOTO 460

DO 450 I=2,NX-I

WRITE(6,9270) I

READ(5,9010) DX(I)

450 DX(I)=DX(I)*A/100.0
460 CONTINUE

WRITE(6,9220)

READ(5,9000) B
BB=0.5*B

WRITE(6,9250)

READ(5,9030) NY

DY(1) =0.0

DY (NY )=B

IF (NY.LE.2) GOTO 510

DO 500 I=2,NY-I

WRITE(6,9280) I

READ(5,9010) DY(I)

500 DY(I)=DY(I)*B/100.0

510 CONTINUE

WRITE(6,9230)

READ(5,9000) HT
CC=0.5*C

IF(.NOT. (HT.EQ.C))

WRITE (6,9260)

READ(5,9030) NZ

DZ(1)=0.0
DZ (NZ)=C
IF (NZ.LE.2) GOTO 560

DO 550 I=2,NZ-I

WRITE(6,9290) I

READ(5,9010) DZ(I)

550 DZ(I)=DZ(I)*C/100.0

56O CONTINUE

ICOUNT+I

WRITE(6,9330)
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C GENERAL MATERIALS INFORMATION FOR THE SUBCELL

C

WRITE(6,9310) ICOUNT+I

READC5,9030) NMAT
MCOUNT=O

DO 570 I=I,24

DO 570 J=1,24

570 KS(I,J)=O-O
DO 580 I=i,24

DO 580 J=l,9

580 BDG (I, J) =0-0
DO 590 I=i,9

DO 590 J=l,9

590 GDG [I,J)=0.0
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C INNER DO LOOP ON MATLS. WITHIN SUBCELL BEGINS HERE C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

600 WRITE(6,9320)

READ(5,9030) MN

C
C INPUT 8 MATL. VOL. FRACTIONS AT EACH INTEGRATION POINT

C

8OO

85O

860

DO 2000 I=I,NX

DO 2000 J=I,NY

DO 2000 K=I,NZ

DO 800 LL=I,8

VF (LL) =0.0
WRITE (6,9480)

READ(5,9000) A1

WRITE (6,9490)

READ (5,9000) A2

WRITE (6,9420) I,J,K

READ(5,9030) L

IF((L.LT.0) .OR. (L.GT.8))

WRITE (6,9430) L

READ (5,9000) VF(L)
GO TO 850

CONTINUE

IF(I.EQ.NX) THEN
XP=O. 0

ELSE

XP= CDX (I+l) -DX (I))/2.0

END IF

IF(I.EQ. i) THEN
XM=0.0

ELSE

XM= (DX (I) -DX (I-l))/2.0

END I F

IF (J. EQ. NY) THEN

YP=0.0

ELSE

YP= (DY (J+l) -DY (J) ]/2.0

END IF

IF(J.EQ.I) THEN
YM=O. 0

ELSE

YM= (DY (J)-DY (J-l))/2.0

END IF

IF (K.EQ.NZ) THEN

ZP=0.0

GO TO 860
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ELSE
ZP=(DZ(K+l) -DZ(K))/2.0
ENDIF
IF(K.EQ. i) THEN
ZM=0.0
ELSE
ZM=(DZ(K) -DZ(K-l))/2.0
ENDIF
VI=VF(I) *XP*YP*ZP
V2=VF(2) *XP*YP*ZM
V3=VF(3) *XP*YM*ZP
V4=VF(4) *XP*YM*ZM
V5=VF(5) *XM*YP*ZP
V6=VF(6) *XM*YP*ZM
V7=VF(7) *XM*YM*ZP
VS=VF(8) *XM*YM*ZM
VOL=VI+V2+V3+V4+VS+V6+V7+V8

GETTHE STRAINTRANSFORMATIONMATRIX(T)

SI=SIND(AI)
S2=SIND(A2)
CI=COSD(AI)
C2=COSD(A2)
SIS=SI*SI
$2S=$2-$2
ClS=CI*CI

C2S=C2"C2

SCI=SI*CI

SC2=$2"C2

T(I,I)=CIS*C2S

T(I, 2) =SIS*C2S

T(I,3)=$2S

T (i, 4) =SCI*C2S

T(I, 5) =SI*SC2

T (I, 6) =CI*SC2

T(2,1)=SIS

T(2,2) =CIS

T(2,3)=0.0

T(2,4)=-SCI

T(2,5]=0.0

T(2,6)=0.0

T(3,1]=ClS*S2S

T(3,2]=SIS*$2S

T(3,3)=C2S

T (3,4) =SCl*S2S

T (3 , 5) =-SI*SC2

T (3 , 6) =-CI*SC2

T(4,1)=-2.0"SCI*C2

T(4,2)=-T(4,1)

T(4,3)=0.0

T(4,4) = (CIS-SIS) *C2

T (4,5) =CI*S2

T(4,6) =-SI*$2

T 15, i) =2.0*SCI*S2

TI5,2)=-T(5,1)

T(5,3)=0.0

T (5,4) =- (CIS-SIS) *$2

T (5,5) =CI*C2

T(5,6) =-SI*C2
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C

C GET

C

ii00

T(6,1)=-2.0"CIS*SC2

T(6,2)=-2.0"SIS*SC2

T(6,3)=2.0"SC2
T(6,4)=-SCI*SC2"2.0

T(6,5)=SI*(C2S-$2S)

T(6,6)=CI*(C2S-$2S)

STRESS-STRAIN MATRIX (SS) IN MATL. COORD. SYSTEM

DO ll00 II=l,6

DO Ii00 JJ=l,6

SS(II,JJ)=0.0
MC=MN

MU=PROP(MC,4)

R=PROP(MC,3)*PROP(MC,3)*PROP(MC,2)/PROP(MC, I)

D=(I.0+MU)*(I.0-MU-2.0*R)

IF(D.LE.0.0) D=I.0

SS(I,I)=PROP(MC,I)*(I.0-MU*MU)/D

SS(I,2)=PROP(MC,2)*PROP(MC,3)*(I-0+MU)/D

SS (1,3)=SS (1,2)

SS (2, I) =SS (i, 2)

SS (2,2) =PROP(MC, 2) * (I. 0-R)/D

SS (2,3) =PROP (MC, 2) * (MU+R)/D

ss(_, 1)=ss(1,3)
SS(3,2)=SS(2,3)

SS(3,3)=SS(2,2)

SS (4,4) =PROP(MC, 5)

SS (5,5) =PROP (MC, 6)

SS (6,6) =PROP (MC, 5)

C

C GET

C

1150

1200

1225

1250

1300

1350

C

STRESS-STRAIN MATRIX (SS) IN COORDS. OF THE

DO 1200 II=l,6

DO 1200 JJ=l,6

SUM=0.0

DO 1150 KK=I,6

SUM=SUM+SS(II,KK)*T(KK,JJ)

PR(II,JJ)=SUM
DO 1225 II=l,3

DO 1225 JJ=4,6

T(II,JJ)=2.0*T(II,JJ)

T[JJ,II)=0.5*T(JJ,II)
CALL MATOPS(KA,T,DET,DDDD)

DO 1300 II=l,6

DO 1300 JJ=l,6

SUM=0 •0
DO 1250 KK=I,6

SUM=SUM+T (I I, KK) * PR (KK, JJ )

BIG(II,JJ)=SUM*VOL

CONTINUE

SUBCELL GEOMETRY CALCULATIONS

1400

1500

DO 1400 II=l,6

DO 1400 JJ=l,9

GM(II,JJ)=0.0
DO 1500 II=l,6

DO 1500 JJ=l,24

BM (II, JJ) =0.0

SUBCELL
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C
C

C

FORM 8 NODE FINITE ELEMENT STIFFNESS MATRIX FOR

X=DX (I)-AA
Y=DY (J) -BB

Z=DZ (K)-CC
Xl =- (0. 125/AA) * (i. O-Y/BB)

YI=-(0. 125/BB) * (I. 0-X/AA)

Z1 =-(0.125/cC)* (I.0-X/AA)

X2=- (0. 125/AA) * (I. 0-Y/BB)

Y2 =- (0. 125/BB) * (1.0-X/AA)

Z2=+ (0. 125/CC) * (I. O-X/AA)

X3=- (0. 125/AA) * (i. 0+Y/BB)

Y3=+ (0. 125/BB) * (i. 0-X/AA)

z3=- (0. 125/cc) *(I.0-X/AA)
X4=-(0.125/AA)*(I.0+Y/BB)

Y4=+ (0. 125/BB) * (i. 0-X/AA)

Z4=+ (0. 125/CC) * (I. 0-X/AA)

X5=+ (0. 125/AA) * (i. 0-Y/BB)

Y5=- (0. 125/BB) * (i. 0+X/AA)

Z5=- (0. 125/CC) * (i. O+X/AA)

X6=+ (0. 125/AA) * (i. 0-Y/BB)

Y6=- (0. 125/BB) * (1.0+X/AA)

Z6=+ (0. 125/CC) * (i. 0+X/AA)

X7=+ (0. 125/AA) * (i. 0+Y/BB)

Y7=+ (0. 125/BB) * (I. 0+X/AA)

Z7 =- (0. 125/CC) * (i. 0+X/AA)

X8=+ (0. 125/AA) * (i. 0+Y/BB)

Y8=+ (0. 125/BB) * (i. 0+X/AA)

Z8=+ (0. 125/CC) * (I. 0+X/AA)

XX=-2.0*X/(AA*AA)
YY=-2.0*Y/(BB*BB)

ZZ=-2.0*Z/(CC*CC)
GM(I, I}=XX

GM(2,5)=YY

GM(3,9} =ZZ

GM(4,2 =XX

GM (4,4 =YY

GM(5,6 =YY

GM(5,8 =ZZ

GM(6,3 =XX

GM(6,7 =ZZ

BM(I, 1 =XI

BM(2,2)=YI

BM(3,3)=ZI

BM(I,4}=X2

BM(2,51 =Y2

BM(3,6)=Z2

BM(I,7)=X3

BM(2,8)=Y3

BM(3,9)=Z3

BM(I, i0) =X4

BM(2, Ii) =Y4

BM(3,12) =Z4

BM(I, 13)=X5

BM(2,14) =Y5

BM(3 , 15) =Z5

BM(I, 16) =X6

BM(2,17) =Y6

BM(3,18) =Z6

* (i.o-z/cc)
* (l.O-Z/CC)
* (i. 0-Y/BB)

* (i.O+Z/CC)
* (i.o+z/cc)
* (i. O-Y/BB)

* (i.o-z/cc)
* (l.O-Z/CC)
* (I. 0+Y/BB)

* (I.o+Z/CC)
* (i.o+z/cc)
* (i. 0+Y/BB)

* (I. o-z/cc)
* (i. o-z/cc)
* (I. 0-Y/BB)

* (I. 0+Z/CC)
* (i. O+Z/CC)
* (i. 0-Y/BB)

* (I. o-z/cc)
* (i. o-z/cc)
* (i. 0+Y/BB)

* (i. o+z/cc)
* (l.O+Z/CC)
* ( I. 0+Y/BB)

SUBCELL
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1600

BM(I,19)=X7

BM(2 20)=Y7

BM(3 21)=Z7

BM(I 22)=X8

BM(2 23) =Y8

BM(3 24) =Z8

BM(4 1)=Yl

BM(5 2)=ZI

BM(6 3)=XI

BM(4 4)=Y2

BM(5,5)=Z2

BM(6,6) =X2

BM(4,7] =Y3

BM(5,8]=Z3

BM(6,9]=X3

BM(4,10)=Y4

BM(5,11)=Z4

BM(6,12)=X4

BM(4,13)=Y5

BM(5,14)=Z5

BM(6,15)=X5

BM(4,16)=Y6

BM(5,17)=Z6

BM(6,18)=X6

BM(4,19) =Y7

BM(5,20)=Z7

BM(6,21)=X7
BM [4,22 ) =Y8

BM(5,23) =Z8

BM(6,24)=X8

BM(6,1)=Z1

BM(4,2)=XI

BM(5,3)=YI

BM(6,4)=Z2

BM(4,5)=X2

BM(5,6)=Y2

BM(6,7)=Z3

BM(4,8]=X3

BM(5,9)=YS

BM(6,10)=Z4

BM(4,11)=X4

BM(5 12)=Y4

BM(6 13)=Z5

BM(4 14)=X5

BM(5 15)=Y5

BM(6 16) =Z6

BM(4 17) =X6

BM(5 18) =Y6

BM(6 19)=Z7

BM(4.20)=X7

BM(5 21)=Y7

BM(6,.22)=Z8

BM(4.23)=X8

BM(5,24)=Y8

DO 1600 II=l,6

DO 1600 JJ=l,24

DB(II,JJ)=O.0

DO 1600 KK=I,6

DB(II,JJ)=DB(II,JJ)+BIG(II,KK)*BM(KK,JJ)

DO 1700 II=l,6
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1700

1750

1800

1900

2000

2020

2030

2040

C

C PUT

C

2050

2100

2200

DG(II,I)=XX*BIG(II,I)

DG(II,2)=XX*BIG(II,4)

DG(II,3)=XX*BIG(II,6)

DG(II,4)=YY*BIG(II,4)

DG(II,5)=YY*BIG(II,2)

DG(II,6)=YY*BIG(II,5)

DG(II,7)=ZZ*BIG(II,6)

DG(II,8)=ZZ*BIG(II,5)

DG(II,9)=ZZ*BIG(II,3)
DO 1750 II=l,9

DO 1750 JJ=l,9
DO 1750 KK=I,6

GDG(II,JJ)=GDG(II,JJ)+GM(KK,II)*DG(KK,JJ)

DO 1800 II=i,24

DO 1800 JJ=l,9

DO 1800 K_=I,6

BDG(II,JJ)=BDG(II,JJ)+BM(KK,II)*DG(KK,JJ)

DO 1900 II=i,24

DO 1900 JJ=l,24

DO 1900 KK=I,6

KS(!I,JJ)=KS(II,JJ)+BM(KK, II)*DB(ICK,JJ)
CONTINUE

MCOUNT=MCOUNT+I

IF(MCOUNT.LT.NMAT) GO TO 600

CALL INV(GDG)

DO 2020 I=i,9

DO 2020 J=i,24

GB(I,J)=0.0
DO 2020 K=I,9

GB(I,J)=GB(I,J)+GDG(I,K)*BDG(J,K)

DO 2030 I=I,24

DO 2030 J=i,24

KMOD(I,J)=0.0

DO 2030 K=I,9

KMOD (I, J)=KMOD (I, J) +BDG (I, K) *GB (K, J)

DO 2040 I=i,24

DO 2040 J=i,24

KS (I,J) =KS (I,J) -KMOD(I,J)

SMALL STIF. MATRIX (KS) INTO BIG STIF. MATRIX (KB)

ICOUNT=ICOUNT+I

DO 2400 I=I,NBX

DO 2400 J=I,NBY

QT=QTR(I,J)

NK=NBL(I,J)

IF(.NOT. (NK.EQ.ICOUNT)) GO TO

IF(QT.LT.0) GO TO 2400

DO 2050 II=i,24

DO 2050 JJ=l,24

SK(II,JJ)=KS(II,JJ)

IF(QT.EQ.0) GO TO 2100

CALL TRNS (QT, SK)

LC (i) = ((NBY+I) * (I-l) +J-l) "6+1

LC (13) =LC (1) + (NBY+I) *6

DO 2200 K=2,12

LC(K)=LC(K-I)+I

LC(K+I2)=LC(K+II)+I

DO 2300 II=i,24

DO 2300 JJ=l,24

2400
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III=LC(II)
JJJ=LC(JJ)

2300 KB(III,JJJ)=KB(III,JJJ)+SK(II,JJ)
2400 CONTINUE

IF(ICOUNT.LT.NB) GO TO 350
GO TO 2460

2440 ISYM=I

DO 2445 I=l,IJ

DO 2445 J=l,IJ

2445 KN(I,J)=0.O

DO 2447 I=l,IJ

2447 KN[I,I)=I.0

IF(LX) IJ=IJ-2*NBY+I

IF[LY) IJ=IJ-2*NBX+I

DO 2450 I=I,NP

DO 2450 J=l,6

2450 FB(I,J)=O.0

2460 CONTINUE

CALC. DISP. VECTORS FOR 6 HOMOGENEOUS UNIT STRAIN CASES

2500

2525

C

C USE

C

2850

2900

C

C USE

C

2950

DO 2500 I=I,NBX+I

DO 2500 J=IoNBY+I

K=((I-I)*(NBY+I)+(J-I))*6+I

FB(K,I)=FDX(I)*XL/100.0

FB(K+3,1)=FB(K,I)

FB(K+I,2)=FDY(J)*YL/100.O

FB(K+4,2)=FB(K+I,2)

FB(K+5,3)=C

FB(K,4)=FB(K+I,2)

FB(K+3,4)=FB(K,4)

FB(K+4,5)=C

FB(K+3,6)=C

DO 2525 I=I,NP

DO 2525 J=l,6

UXFW(I,J)=FB(I,J)

FORCE B.C.S TO ELIMINATE INTERNAL SURFACE FORCES

IN=0

IF((NBX.LE.I).OR.(NBY.LE.I))GO TO 2950

DO 2900 I=2,NBX

DO 2900 J=2,NBY

L=[(I-I)*(NBY+I)+(J-I))*6

DO 2850 K=I,NP

KM(IN+I,K)=KB(L+I,K)+KB(L+4,K)

KM(IN+2,K)=KB(L+2,K)+KB(L+5,K)

KM(IN+3,K)=KB(L+3,K)+KB(L+6,K)
IN=IN+3

CONTINUE

FORCE B.C.S TO ELIMINATE FORCE AT SIDE NODES

IF(NBX.LE.I) GO TO 3150

DO 3100 I=2,NBX

L=6*(I-1)*(NBY+I)
LL=L+NBY*6

IF(LY) GO TO 3050
DO 3000 K=I,NP

KM(IN+I,K)=KB(L+I,K)+KB(L+4,K)+KB(LL+I,K)+KB(LL+4,K)
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3000

3050

3075

3O8O

3085

3090
3100
3150

3200

3250

3275

3280

3285

3290
3300
3305

3310

3311

3312

DO3075
KM(IN+I
KM(IN+2
KM(IN+3
KM(IN+4
IN=IN+4

KM[IN+2,K)=KB(L+2,K)+KB(L+5,K)+KB(LL+2,K)+KB(LL+5,K)
KM(IN+3,K)=KB(L+3,K)+KB(L+6,K)+KB(LL+H,K)+KB(LL+6,K)
IN=IN+3
GO TO 3100

CONTINUE

IF(ISYM.EQ.I) GO TO 3080

K=I,NP

,K) =KB(L+I,K) +KB(L+4, K)

,K) =KB (L+3, K) +KB (L+6, K)

,K) =KB (LL+I, K) +KB (LL+4, K)

,K)=KB(LL+3,K)+KB(LL+6,K)

GO TO 3090

CONTINUE

DO 3085 K=I,NP

KM(IN+I,K)=KB(L+2,K)+KB(L+5,K)

KM(IN+2,K)=KB(LL+2,K)+KB(LL+5,K)
INffiIN+2

CONTINUE

CONTINUE

IF(NBY.LE.I) GO TO 3305
DO 3300 J=2,NBY

L=6*(J-I)

LL=L+NBX*(NBY+I)*6

IF(LX) GO TO 3250
DO 3200 K=I,NP

KM(IN+I,K)=KB(L+I,K)+KB(L+4,K)+KB(LL+I,K)+KB(LL+4,K)

KM(IN+2,K)=KB(L+2,K)+KB(L+5,K)+KB(LL+2,K)+KB(LL+5,K)

KM(IN+3,K)=KB(L+3,K)+KB(L+6,K)+KB(LL+3,K)+KB(LL+6,K)
IN=IN+3

GO TO 3300

CONTINUE

IFIISYM.EQ.I) GO TO 3280

DO 3275 K=I,NP

KM(IN+I,K)=KB(L+2,K)+KB(L+5,K)

KM(IN+2,K)=KB(L+3,K)+KB(L+6,K)

KM(IN+3,K)=KB(LL+2,K)+KB(LL+5,K)

KM(IN+4,K)=KB(LL+3,K)+KB(LL+6,K)
IN=IN+4

GO TO 3290

CONTINUE

DO 3285 K=I,NP

KM(IN+I,K)=KB(L+I,K)+KB(L+4,K)

KM(IN+2,K)=KB(LL+I,K)+KB(LL+4,K)

IN=IN+2

CONTINUE

CONTINUE

CONTINUE

IF(.NOT.LY) GO TO 3315
L=6*NBY

LL=L+6*NBX*(NBY+I)

IF(ISYM.EQ.1) GO TO 3311

DO 3310 K=I,NP

KM(IN+I,K)=KB(L+I,K)+KB(L+4,K)+KB(LL+I,K)+KB(LL+4,K)

KM(IN+2,K)=KB(L+3,K)+KB(L+6,K)+KB(LL+3,K)+KB(LL+6,K)
IN=IN+2

GO TO 3314

CONTINUE

DO 3312 K=I,NP

KM(IN+I,K)=KB(L+2,K)+KB(L+5,K)+KB(LL+2,K)+KB(LL+5,K)
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3314
3315

3320

3321

3322

3324
3325

9085

3330

3335

3340
3345

C
C USE
C

3350

3375
3400

3425

3430

IN=IN+I
CONTINUE
CONTINUE
IF(.NOT.LX) GOTO 3325
L=6*NBX*(NBY+I)
LL=L+6*NBY
IF(ISYM.EQ.I) GOTO 3321
DO 3320 K=I,NP
KM(IN+I,K)=KB(L+2,K)+KB(L+5,K)+KB(LL+2,K)+KB(LL+5,K)
KM(IN+2,K)=KB(L+3,K)+KB(L+6,K)+KB(LL+3,K)+KB(LL+6,K)
IN=IN+2
GOTO 3324
CONTINUE
DO3322 K=I,NP
KM(IN+I,K)=KB(L+I,K)+KB(L+4,K)+KB(LL+I,K)+KB(LL+4,K)
IN=IN+I
CONTINUE
CONTINUE
IF(IJ.LT.I) GOTO 3345
FORMAT(IH,6F12.0)
DO3330 I=l,IJ
DO3330 J=l,7
FS(I,J) =0.0

DO 3340 I=i,6

DO 3335 J=I,IN

DO 3335 K=I,NP

FS (J, 7) =FS (J, 7) +KM (J, K) *UVW (K, I)

DO 3340 J=l,IJ

FS (J, I) =FS (J, 7)

FS(J,7)=0.O

CONTINUE

DISPLACEMENT B.C.S TO ELIMINATE DISPLACEMENTS

INN=IN

IN=0

IF(IJ.LT.I) GO TO 3575

IF((NBX.LE.I).OR. (NBY.LE.I)) GO TO 3400

DO 3375 I=2,NBX

DO 3375 J=2,NBY

L=((I-I)*(NBY+I)+(J-I))*6
DO 3350 K=I,INN

KN(K, IN+I)=KM(K,L+I)+KM(K,L+4)

KN(K,IN+2)=KM(K,L+2)+KM(K,L+5)

KN(K,IN+3)=KM(K,L+3)+KM(K,L+6)

IN=IN+3

CONTINUE

CONTINUE

IF(NBX.LE.I) GO TO 3475

DO 3450 I=2,NBX

L=6*(I-I)*(NBY+I)
LL=NBY*6+L

IF(LY) GO TO 3430
DO 3425 K=I,INN

KN(K,IN+I]=KM(K,L+I)+KM(K,L+4)+KM(K,LL+I)+KM(K,LL+4)

KN(K,IN+2]=KM(K,L+2)+KM(K,L+5)+KM(K, LL+2)+KM(K,LL+5)

KN(K,IN+3)=KM(K,L+3)+KM(K,L+6)+KM(K,LL+3)+KM(K,LL+6)

IN=IN+3
GO TO 3450

CONTINUE
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3440

3445

3447

3449
3450
3475

3480

3490

3495

3496

3497

3499
3500
3510

3520

3530

3535

3540
3550

IF(ISYM.EQ.I) GOTO 3445
DO3440 K=I,INN
KN(K,IN+I)=KM(K,L+I)+KM(K,L+4)
KN(K,IN+2)=KM(K,L+3)+KM(K,L+6)
KN(K,IN+3)=KM(K,LL+I)+KM(K,LL+4)
KN(K,IN+4)=KM(K,LL+3)+KM(K,LL+6)
IN=IN+4
GOTO 3449
CONTINUE
DO 3447 K=I,INN
KN(K,IN+I)=KM(K,L+2)+KM(K,L+5)
KN(K,IN+2)=KIM(K,LL+2)+KM(K,LL+5)
IN=IN+2
CONTINUE
CONTINUE
CONTINUE
IF(NBY.LE.I) GOTO 3510
DO3500 J=2,NBY
L=6* (J-l)
LL=6*NBX*(NBY+I)+L
IF(LX) GOTO 3490
DO 3480 K=I,INN
KN(K,IN+I)=KM(K,L+I)+KM(K,L+4)+KM(K,LL+I)+KM(K,LL+4)
KN(K,IN+2)=k94(K,L+2)+KM(K,L+5)+KM(K,LL+2)+KM(K,LL+5)
KN(K,IN+3)=KM(K,L+3)+KM(K,L+6)+KM(K,LL+3)+KM(K,LL+6)
IN=IN+3
GOTO 3500
CONTINUE
IF(ISYM.EQ.I) GOTO 3496
DO3495 K=I,INN
KN(K,IN+I)=KM(K,L+2)+KM(K,L+5)
KN(K,IN+2)=KM(K,L+3)+KM(K,L+6)
KN(K,IN÷3)=KM(K,LL+2)+KM(K,LL+5)
KN(K,IN+4)=KM(K,LL+3)+KM(K,LL+6)
IN=IN+4

GO TO 3499

CONTINUE

DO 3497 K=I,INN

KN(K,IN+I)=KM(K,L+I]+KM(K,L+4)

KN(K,IN+2)=KMCK,LL+I)+KM(K, LL+4)
IN=IN+2

CONTINUE

CONTINUE

CONTINUE

IFC.NOT.LY) GO TO 3550

L=6*NBY

LL=L+6*NBX*(NBY+I)

IF(ISYM.EQ.I) GO TO 3530

DO 3520 K=I,INN

KN(K, IN+I)=KM(K,L+I)+KM(K,L+4)+KM(K, LL+I)+KM(K, LL+4)

KN(K,IN+2)=KM(K,L+3)+KM(K,L+6)+KM(K,LL+3)+KM(K,LL+6)
IN=IN+2

GO TO 3540

CONTINUE

DO 3535 K=I,INN

KN(K,IN+I)=KM(K,L+2)+KM(K,L+5)+KM(K,LL+2)+KM(K,LL+5)

IN=IN+I

CONTINUE

CONTINUE

IF(.NOT.LX) GO TO 3570
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3560

3565

3566

3569

3570

C

C GET

C

C

C GET

C

3575

3590

3600

3625

3650

3700

3710

3720

L=6*NBX*(NBY+I)
LL=L+6*NBY

IF(ISYM.EQ.I) GO TO 3565

DO 3560 K=I,INN

KN(K,IN+I)=KM(K,L+2)+KM(K,L+5)+KM(K,LL+2)+KM(K,LL+5)

KN(K, IN+2)=KM(K,L+3)+KM(K,L+6)+KM(K,LL+3)+KM(K,LL+6)
IN=IN+2

GO TO 3569

CONTINUE

DO 3566 K=I,INN

KN(K,IN+I)=KM(K,L+I)+KM(K,L+4)+KM(K,LL+I)+KM(K,LL+4)
IN=IN+I

CONTINUE

CONTINUE

UNCONSTRAINED DISPLACEMENTS FOR 6 UNIT STRAIN CASES

IZ=0

CALL GELIM(MMM,IJ,KN,7,FS,IP,IZ,WK,IERR)

A COMPLETE SET OF TOTAL DISPLACEMENTS

IN=0

IF((NBX.LE.I).OR.(NBY.LE.I)) GO TO 3650
DO 3625 I=2,NBX

DO 3625 J=2,NBY

LL=(I*NBY+I+J-NBY-2)*6

DO 3600 K=I,3
KP=K+3

DO 3600 L=I,6

UVW(LL+K,L)=UVW(LL+K,L)-FS(IN+K,L)

UVW(LL+KP,L)=UVW[LL+KP,L)-FS(IN+K,L)
IN=IN+3

CONTINUE

IFINBX.LE.I) GO TO 3750

DO 3740 I=2,NBX

L=6*(I-I)*(NBY+I)
LL=L+NBY*6

IF(LY) GO TO 3710

DO 3700 K=I,3

KP=K+3

DO 3700 M=I,6

UVW(L+K,M) =UVW(L+K,M) -FS(IN+K,M)

UVW(L+KP,M) =UVW(L+KP,M) -FS(IN+K,M)

UVW(LL+K,M)=UVW(LL+K,M)-FS(IN+K,M)

UVW(LL+KP,M)=UVW(LL+KP,M)-FS(IN+K,M)
IN=IN+3

GO TO 3740

CONTINUE

IF(ISYM.EQ.I) GO TO 3730

DO 3720 M=l,6

UVW (L+I, M) =UVW (L+I, M) -FS (IN+l, M)

UVW[L+3,M)=UVW(L+3,M)-FS(IN+2,M)

UVW[L+4,M)=UVW(L+4,M)-FS(IN+I,M)

UVW(L+6,M)=[YVW(L+6,M)-FS(IN+2,M)

UVW(LL+I,M)=UVW(LL+I,M)-FS(IN+3,M)

UVW[LL+3,M)=UVW(LL+3,M)-FS(IN+4,M)

UVW(LL+4,M)=UVW(LL+4,M)-FS(IN+3,M)

UVW(LL+6,M)=UVW(LL+6,M)-FS(IN+4,M)

IN=IN+4
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3730

3735

3737
3740
3750

3800

3810

3820

3825

3830

3835

3845

385O

3860

GO TO 3737

CONTINUE

DO 3735 M=I,6

UVW(L+2,M)=UVW(L+2,M)-FS(IN+I,M)

UVW[L+5,M)=UVW(L+5,M)-FS(IN+I,M)

UVW[LL+2,M)=UVW(LL+2,M)-FS(IN+2,M)

UVWCLL+5,M)=UVW(LL+5,M)-FS(IN+2,M)
IN=IN+2

CONTINUE

CONTINUE

IF(NBY.LE.I) GO TO 3850

DO 3845 J=2,NBY

L = 6*(J-l)

LL=L+ 6*(NBY+I)*NBX

IF(LX) GO TO 3810

DO 3800 K=I,3
KP=K+3

DO 3800 M=I,6

UVW(L+K,M) =UVW(L+K,M) -FS(IN+K,M)

UVW(L+KP,M) =UVW(L+KP,M) -FS(IN+K,M)

UVW(LL÷K,M) =UVW(LL+K,M) -FS(IN+K,M)

UVW(LL+KP,M) =UVWCLL+KP,M ) -FS(IN+K,M)
IN=IN+3

GO TO 3845

CONTINUE

IF(ISYM.EQ.I) GO TO 3825

DO 3820 M=I,6

UVW(L+2,M)=UVW(L+2,M)-FS(IN+I,M)

UVW(L+3,M)=UVW(L+3,M)-FS(IN+2,M)

UVW(L+5,M)=UVW(L+5,M)-FS(IN+I,M)

UVW(L+6,M)=UVW(L+6,M)-FS(IN+2,M)

UVW(LL+2,M)=UVW[LL+2,M)-FS(IN+3,M)

UVW(LL+3,M)=UVW(LL+3,M)-FS(IN+4,M)

UVW(LL+5,M)=UVW(LL+5,M)-FS(IN+3,M)

UVW(LL+6,M)=UVW(LL+6,M)-FS(IN+4,M)
IN=IN+4

GO TO 3835

CONTINUE

DO 3830 M=I,6

UVW(L+I,M)=UVW(L+I,M)-FS(IN+I,M)

UVW(L+4,M)=UVW(L+4,M)-FS(IN+I,M)

UVW(LL+I,M)=UVW(LL+I,M)-FS(IN+2,M)

UVW(LL+4,M)=UVW(LL+4,M)-FS(IN+2,M)
IN=IN+2

CONTINUE

CONTINUE

CONTINUE

IF[.NOT.LY) GO TO 3870
L=6*NBY

LL=L+6*NBX*(NBY+I)

IF[ISYM.EQ.I) GO TO 3865

DO 3860 M=l,6

UVW(L+I,M)=UVW(L+I,M)-FS(IN+I,M)

UVW(L+3,M)=UV (L+3,M)-FS(IN+2,M)

UVW(L+4,M)=UVW(L+4,M)-FS(IN+I,M)

UVW(L+6,M)=UVW(L+6,M)-FS(IN+2,M)

UVW(LL+I,M)=UVW(LL+I,M)-FS(IN+I,M)

UVW(LL+3,M)=UVW(LL+3,M)-FS(IN+2,M)

UVW(LL+4,M)=UVW(LL+4,M)-FS(IN+I,M)

UVW(LL+6,M)=UVW(LL+6,M)-FS(IN+2,M)
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3865

3866

3869
3870

388O

3885

3886

3889
3890

C
C COMPUTENODALFORCES
C

IN=IN+2
GOTO 3869
CONTINUE
DO3866 M=I,6
UVW(L+2,M)=UVW(L+2,M)-FS(IN+I,M)

UVW(L+5,M)=UVW(L+5,M)-FS(IN+I,M)

UVW(LL+2,M)=UVW(LL+2,M)-FS(IN+I,M)

UVW(LL+5,M)=UVW(LL+5,M)-FS(IN+I,M)
IN=IN+I

CONTINUE

CONTINUE

IF(.NOT.LX) GO TO 3890

L=6*NBX*(NBY+I)
LL=L+6*NBY

IF(ISYM.EQ.I) GO TO 3885

DO 3880 M=I,6

UVW{L+2,M)=LrVW(L+2,M)-FS(IN+I,M)

UVW{L+3,M)=UVW(L+3,M)-FS(IN+2,M)

UVW(L+5,M)=UVW(L+5,M)-FS(IN+I,M)

UVW(L+6,M)=UVW(L+6,M)-FS(IN÷2,M)

UVW(LL+2,M)=UVW(LL+2,M)-FS(IN+I,M)

UVW(LL+3,M)=UVW(LL+3,M)-FS(IN+2,M)

UVW(LL+5,M)=UVW(LL+5,M)-FS(IN+I,M)

UVW(LL+6,M)=UVW(LL+6,M)TFS(IN+2,M)
IN=IN+2

GO TO 3889

CONTINUE

DO 3886 M=I,6

UVW(L+I,M)=UVW(L+I,M)-FS(IN+I,M)

UVW(L+4,M)=UVW(L+4,M)-FS(IN+I,M)

UVW(LL+I,M)=UVW(LL+I,M)-FS(IN+I,M)

UVW(LL+4,M)=UVW(LL+4,M)-FS(IN+I,M)
IN=IN+I

CONTINUE

CONTINUE

IF(NP.LT.1) GO TO 3950

DO 3900 I=I,NP

DO 3900 J=l,6

FB(I,J) =0.0

DO 3900 K=I,NP

FB (I,J) =FB (I, J) +KB(I, K) *UVW (K, J)
CONTINUE

3900

3950

C

C COMPUTE SIDE LOADS FOR EACH OF THE 6 UNIT

C

4200

YLC=YL*C

XLC=XL*C

DO 4500 I=I,6

DO 4200 J=I,NBY+I

K=(J-I)*6

FT(Itl)=FT(I,I)+FB(K+I,I)+FB(K+4,I)

FT(4,I)=FT(4,I)+FB(K+2,I)+FB(K+5,I)

FT(6,I)=FT(6,I)+FB(K+3,I)+FB(K+6,I)

FT(I,I)=-FT(I,I)/YLC

FT(4,I)=-FT(4,I)/YLC

FT(6,I)=-FT(6,I)/YLC

DO 4300 J=I,NBX+I

STRAIN CASES
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K=(NBY+I)* (J-l) *6
FTC2, I) =FT (2, I) +FB (K+2, I) +FB (K+5, I)

4300 FT (5, I) =FT (5, I) +FB (K+3, I) +FB [K+6, I)

FT (2, I) =-FT (2, I)/XLC

FT (5, I) =-FT (5, I)/XLC

DO 4400 J=I,NBX+I

DO 4400 K=I,NBY+I

L= ((NBY+I) * (J-l) + (K-l)) *6

4400 FT (3, I) =FT (3, I) +FB (L+3, I)

FT (3, I) =-FT (3, I) / (XL*YL)
4500 CONTINUE

IF(ISYM.EQ.0) THEN

DO 4600 I=i,6

DO 4600 J=l,6

TF(I,J) =FT (I,J)

4600 FT(I,J)=0.0
END IF

IF((LX.OR.LY) .AND. (ISYM.EQ.0)) GO TO 2440

IF (ISYM. EQ. i) THEN

DO 4700 I=I,6

TF(I,4)=FT(I, 4)

IF (LY) TF(I, 5)=FT(I,5)

4700 IF(LX) TF(I,6)=FT(I,6)
END IF

DO 4800 I=i,6

DO 4800 J=l,6

4800 FT (I,J) =TF (I, J)
C

C CALCULATE THE ELASTIC CONSTANTS OF THE UNIT CELL
C

CALL MATO PS (KA, FT, DET, HH)

EX=I. 0/FT (i, i)

EY=I. 0/FT (2,2)

EZ=I. 0/FT (3,3)

GXY=I. 0/FT (4,4)

GYZ=I. 0/FT (5,5)

GXZ=I. 0/FT (6,6)

PRXY=-FT (I, 2)/FT(2,2)

PRXZ=-FT(I, 3)/FT(3,3)

PRYZ---FT (2,3)/FT (3,3)

MIXXY=FT (4, I)/FT (i, I)

MIXXZ=FT (6, i)/FT (i, i)

MIXYZ=FT (5, I)/FT (i, I)

MIYXY=FT(4,2)/FT(2,2)

MIYXZ=FT (6,2)/FT (2,2)

MIYYZ=FT (5,2)/FT (2,2)

MIZXY=FT 14,3)/FT(3,3)

MIZXZ=FT C6,3)/FT (3,3)

MIZYZ=FT(5,3)/FT(3,3)

CXYXZ=FT (4,5)/FT (5,5)

CXYYZ=FT (4,6)/FT (6,6)

CXZYZ--FT (5,6)/FT(6,6)

WRITE (6,9560)
WRITE (6,9560)

WRITE (6,9600)

WRITE (6,9560)

WRITE (6,9500)

WRITE (6,9510)

WRITE (6,9520)

WRITE (6,9530)

EX,EY,EZ

GYZ,GXZ,GXY

PRYZ,PRXZ,PRXY

MIXYZ,MIYYZ,MIZYZ
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WRITE(6,9540) MIXXZ,MIYXZ,MIZXZ
WRITE(6,9550) MIXXY,MIYXY,MIZXY
WRITE(6,9550) MIXXY,MIYXY,MIZXY
WRITE(6,9560)
WRITE(6,9560)

9000 FORMAT(F12.5)
9005 FORMAT(IH,8F9.3)
9010 FORMATIFI2.2)
9020 FORMAT(6FI2.2)
9030 FORMAT(I5)
9031 FORMAT(315)
9040 FORMAT(LS)
9050 FORMAT(IH,'SYMMETRYABOUTYZ PLANE(T OR F)')
9055 FORMAT(IH,'SYMMETRYABOUTXZ PLANE(T OR F) ')
9060 FORMAT(IH,'INPUT SUBCELLID. NO. AT LOCATION',214)
9070 FORMAT(IH,'INPUT SUBCELLROTATIONCODENO. AT',214)
9080 FORMAT(IH,'INPUT NO. SUBCELLS(X DIR.) IN UNIT CELL')

9090 FORMAT(IH ,'INPUT NO. SUBCELLS (Y DIR.) IN UNIT CELL')

INPUT NO. COMPOSITE MATERIALS NEEDED,NM')

INPUT NO. OF MASTER SUBCELLS NEEDED,NB')

INPUT E IN FIBER DIRECTION')

INPUT E NORMAL TO FIBER DIRECTION')

INPUT MAJOR POISSONS RATIO IN LT PLANE')
INPUT POISSONS RATIO IN TT PLANE')

INPUT SHEAR MODULUS G IN LT PLANE')

INPUT SHEAR MODULUS G IN TT PLANE')

SELECT A MATERIAL NUMBER FROM ONE TO TEN')

MATERIAL PROPERTY DATA ECHO')

GRID GEOMETRY FOR SUBCELL NUMBER ',I5)

INPUT SIDE LENGTH OF SUBCELL (X DIR.) ')

INPUT SIDE LENGTH OF SUBCELL (Y DIR.) ')

INPUT HEIGHT OF SUBCELL (Z DIR.) ')

INPUT NO. INTEG/PTS. ON SUBCELL (X DIR.)')

INPUT NO. INTEG/PTS. ON SUBCELL (Y DIR.)')

INPUT NO. INTEG/PTS. ON SUBCELL (Z DIR.)')

INPUT DELTA X IN % FOR INTERVAL NO. ',I5)

INPUT DELTA Y IN % FOR INTERVAL NO. ',I5)

INPUT DELTA Z IN % FOR INTERVAL NO. ',I5)
9300 FORMAT(IH , ***')

9310 FORMAT(IH ,'INPUT NO. OF MATLS.IN SUBCELL NO.',I5)

9320 FORMAT(IH ,'SPECIFY THE CURRENT MATL. ID. NO.")

9330 FORMAT(IH , SUBCELL HT. NOT EQUAL UNIT CELL HT.')

9390 FORMAT(IH , INPUT IST SPH. FIBER ANG. AT GRID PT.',314)

9400 FORMAT(IH , INPUT 2ND SPH. FIBER ANG. AT GRID PT.',314)

9420 FORMAT(IH , INPUT OCTANT NO. AT GRID NO.',314)

9430 FORMAT(IH , _NPUT MATL. VOL/FR. AT OCTANT NO.',I5)

9440 FORMAT(IH , INPUT SIDE LENGTH OF UNIT CELL IN X DIR.')

9450 FORMAT(IH , INPUT SIDE LENGTH OF UNIT CELL IN Y DIR.')

9460 FORMAT(IH , INPUT DIST.(%) ORIGIN TO UNIT CELL NODE',I3)

9470 FORMAT(IH , INPUT THICKNESS OF UNIT CELL IN INCHES')

9480 FORMAT(IH , INPUT IST FIBER SPHERICAL ANGLE')

9490 FORMAT(IH , INPUT 2ND FIBER SPHERICAL ANGLE')

9500 FORMAT(IH , EX,EY,EZ = ',3F12.2)

9510 FORMAT(IH , GYZ,GXZ,GXY = ',3F12.2)

9520 FORMAT(IH , 'MUZY,MUZY,MUYX = ',3F12.4)

9530 FORMAT(IH , 'NUYZ,X ; NUYZ,Y ; NUYZ,Z = ',3F12.4)

.9540 FORMAT(IH ,'NUXZ,X ; NUXZ,Y ; NUXZ,Z = ',3F12.4)

9550 FORMAT(IH ,'NUXY,X ; NUXY,Y ; NUXY,Z = ',3F12.4)

9560 FORMAT(IH )

9600 FORMATIIH ,13X,'ELASTIC CONSTANTS OF THE COMPOSITE ')

9100 FORMAT(IH ,

9110 FORMAT(IH ,
9120 FORMAT(IH ,

9130 FORMAT(IH ,

9140 FORMAT(IH ,

9150 FORMAT(IH ,

9160 FORMAT(IH ,

9170 FORMAT(IH ,

9180 FORMAT(IH ,

9190 FORMAT(IH ,

9200 FORMAT(IH ,

9210 FORMAT(IH ,

9220 FORMAT(IH ,

9230 FORMAT(IH ,

9240 FORMAT(IH ,

9250 FORMAT(IH ,

9260 FORMAT(IH ,

9270 FORMAT(IH ,

9280 FORMAT(IH ,

9290 FORMAT[IH ,
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5000 END
C
C SUBROUTINETO TRANSFORMTHE
C

SUBROUTINETRNS(QT,KS)
DIMENSION SK(24,24)

REAL KS (24,24)

INTEGER QT

7117 FORMAT(IH , 'IN SUB TRNS,

IF(QT.GE. I00) THEN
DO I0 I=l,3

SN=I. 0

IF (I.EQ.3) SN=-I.0

DO i0 J=I,24

SK(I,J) =KS (I+3 ,J) *SN

SK (I+3 ,J) =KS (I ,J) *SN

SK(I+6,J) =KS (I+9,J) *SN

SK(I+9,J) =KS (I+6, J) *SN

SK(I+I2 ,J) =KS (I+15,J) *SN

SK(I+IS,J) =KS (I+12 ,J) *SN
SK (I+18 ,J) =KS (I+21, J) *SN

I0 SK (I+2 i, J) =KS (I+18, J) *SN
DO 20 J=l,3

SN=I. 0

IF (J.EQ. 3) SN=-I. 0

DO 20 I=i,24

KS (I,J) =SK (I, J+3) *SN

KS (I, J+3) =SK(I, J) *SN

KS (I, J+6)=SK (I,J+9) *SN

KS (I,J+9) =SK(I ,J+6) *SN

KS (I, J+12) =SK(I, J+15) *SN

KS (I,J+15) =SK (I,J+12) *SN

KS (I,J+lS) =SK (I,J+21) *SN

20 KS (I, J+2 i) =SK (I, J+lS) *SN

QT=QT-100
END IF

IF (QT.GE. i0) THEN

DO I00 I=i,3

SN=-I. 0

IF(I.EQ. i) SN=I. 0
DO I00 J=I,24

SK (I, J) =KS (I+9 ,J) *SN

SK (I+3, J) =KS (I+6, J) *SN

SK(I+6, J) =KS (I+3, J) *SN

SK (I+9,J) =KS (I,J) *SN

SK(I+I2 ,J)=KS (I+21,J) *SN

SK (I+15, J) =KS (I+lS, J) *SN

SK(I+I8,J) =KS (I+15,J) *SN

I00 SK(I+21,J)=KS(I+I2,J)*SN
DO 200 J=l,3

SN=-I. 0

IF (J. EQ. I) SN=I. 0
DO 200 I=1,24

KS (I,J] =SK(I,J+9) *SN

KS (I,J+3) =SK (I,J+6) *SN

KS (I, J+6) =SK (I, J+3) *SN

KS (I,J+9) =SK(I,J) *SN

KS (I,J+12) =SK(I,J+21) *SN

KS (I, J+15) =SK(I,J+IS) *SN

KS (I,J+18) =SK(I,J+IS) *SN

SUBCELL

QT=',I3)

STIFFNESS MATRIX
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200 KS(I, J+21) =SK(I, J+12) *SN
QT=QT-10
ENDIF
IF((QT.EQ.I) .OR.(QT.EQ.3)) THEN
DO300 I=i,3
SN=I. 0
IF(I.EQ. 2) SN=-I. 0
IF(I.EQ. i) II=I+l
IF(I.EQ. 2) II=I-i
IF(I.EQ. 3) II=I
DO300 J=i,24
SK(I ,J) =KS (II+12 ,J) *SN

SK(I+3 ,J) =KS (II+15,J) *SN

SK(I_6 ,J) =KS (II ,J) *SN

SK(I÷9 ,J)=KS(II+3 ,J)*SN

SK (I+12, J) =KS (II+18, J) *SN

SK (I+15,J) =KS (II+2 i, J) *SN

SK (I+18 ,J) =KS (II+6 ,J) *SN

300 SK[I+21,J)=KS(II+9 ,J)*SN

DO 400 J=l,3
SN=I. 0

IF(J.EQ. 2) SN=-I. 0

IF(J.EQ.I) JJ=J+l

IF(J.EQ.2) JJ=J-I

IF(J.EQ. 3) JJ=J

DO 400 I=i,24

KS(I,J ) =SK (I, JJ+12) *SN

KS(I,J+3 )=SK(I,JJ+IS)*SN

KS (I,J+6) =SK(I,JJ )*SN

KS(I,J+9 )=SK(I,JJ+3 )*SN

KS (I,J+12) =SK(I,JJ+I8) *SN

KS (I, J+15) =SK (I, JJ+21) *SN

KS(I,J+IS)=SK(I,JJ+6 )*SN

400 KS(I,J+21)=SK(I,JJ+9 )*SN
END I F

IF((QT.EQ.2) .OR. (QT.EQ.3)) THEN

DO 500 I=i,3
SN=-I. 0

IF(I.EQ. 3) SN=I. 0

DO 500 J=i,24

SK(I ,J) =KS (I+18 ,J) *SN

SK (I+3 ,J)=KS (I+21,J) *SN

SK(I+6,J) =KS (I+12 ,J) *SN

SK (I_-9 ,J) =KS (I+15, J) *SN

SK (I÷12 ,J) =KS (I+6, J) *SN

SK(I_I5,J) =KS (I+9 ,J) *SN

SK (I_i8, J) =KS (I, J) *SN

500 SK(I_21,J)=KS(I+3,J)*SN
DO 600 J=l,3

SN=-I. 0

IF(J.EQ. 3) SN=I. 0

DO 600 I=i,24

KS (I,J) =SK (I ,J+18) *SN

KS (I,J÷3) =SK (I, J+21) *SN

KS (I,J+6) =SK(I,J+I2) *SN

KS (I,J+9) =.SK (I,J+15) *SN

KS (I, J+12) =SK(I,J+6) *SN

KS (I, J+15) =SK(I, J+9) *SN

KS (I,J+lS) =SK(I, J) *SN

600 KS(I,J+21)=SK(I,J+3)*SN
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END IF

9 0 0 RETURN

END

MATRIX INVERSION

SUBROUTINE INV (AK)

DIMENSION KA(7) ,AK(9,9)

KACI) =I0
KA(2) =9

KA(3)--9

KA(4):I
KA(5) =9
KA(6)=0
KA(7) =0

CALL MATOPS (KA,AK, DET, DUMMY)
RETURN

END
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APPENDIX II - INPUT DATA FORMAT

This program operates interactively and is largely self-explanatory. The first

block of input data establishes a 2-D array containing principal elastic constants

for each different material needed in the run. Each material is assumed to be

orthotropic with a principal plane of isotropy. Therefore, only six elastic

constants (per material) must be specified. The first input is an integer between

one and ten quantifying the nun_ber of materials needed for the run. This nun_er

sizes the array that contains the elastic constants of each material. For

convenience six sets of elastic constants reside in the program in the form of

data statements:

I°

2.

3.

4.

5.

6.

When called for, by integer 1-6,

High Modulus Graphite/Epoxy (E 1 = 30 msi)

Intermediate Modulus Graphite/Epoxy (E 1 = 25 msi)

Low Modulus Graphite/Epoxy (E l = 20 msi)

Fiberglass/Epoxy (E 1 = I0 msi)

Aluminum (E = i0 msi)

Bulk Epoxy (E = .5 msi)

the corresponding set of elastic constants is

inserted into the next empty row of the material property array. The material

calling sequence establishes a new material numbering sequence for subsequent use.

Any material may be requested more than once. If a material number between 7 and

I0, inclusive, is requested the program immediately asks for six elastic constants

to be input. Young's modulus in the reinforcement direction is requested first,

followed by Young's modulus in the plane of isotropy. Then the program requests

two Poisson's ratios: first, that which specifies contraction normal to fiber

direction (per unit strain in the fiber direction); second, that which relates to

the plane of isotropy. Finally, two shear moduli are requested: first, in a plane
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containing the fiber principal axis; second, in the plane of isotropy. The

material sequencing then resumes. The number of materials listed must equal the

initial input integer specifying the number of materials to be used.

The next number requested (an integer from one to ten) establishes the total

number of master subcells needed to build the unit cell.

The next block of input data establishes size, subcell division, and subcell

content of the unit cell model. This data describes the unit cell as a 2-D

compartmented container for subcells. The first number (an integer from one to

ten) specifies the number of subcell compartments in the unit cell, as the cell is

traversed in the x-direction (Figure 38). The second integer specifies the number

of subcell compartments in the y direction. The program assumes single subcell

thickness in the z-direction of the unit cell. (Other versions of this program

allow more than one subcell in the thickness direction.)

The next serles of real numbers establish dimensions of all unit cell

compartments. The first number sets unit cell height, i.e., ply thickness and

subcell height. The second real number sets the x-parallel side length of the

unit cell. This number is followd by a sequence of percentages (0.0 to 100.0)

specifying the fractions of x-parallel side length from the origin to the largest

x-dimension within each subcell (Figure 38).

The next set of real numbers establishes the same dimensions along a y-parallel

side of the unit cell. Numbers and sizes of all unit cell compartments are now

fixed. The next pair of integers specifies both the type of master subcell

associated with the first compartment of the unit cell and the type of coordinate

transformation to be performed on that master subcell (prior to placement in that

unit cell compartment). The first integer (specifying subcell type) also tacitly

establishes the sequence of master subcell descriptions that follow. The second
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integer selects the desired subcell coordinate transformation according to the

following code:

Transformation (Whenviewed from the subcell origin,
Integer looking in the + direction along a coordinate axis)

No subcell inserted-i

0

IX

IXX

No subcell transformation necessary

Rotation of 90° CCWabout z axis

Rotation of 180° CCWabout z axis

Rotation of 270° CCWabout z axis

Rotation of 270° cCW about x axis (plus whichever one

of the previous transformations is specified by X)

Reversal of the z axis (plus whichever one of the

previous transformations is specified by XX)

CW

CCW

Indicates clockwise transformation

Indicates counterclockwise transformation

Subsequent pairs of integers are coded in the order shown in Figure 39 until all

the compartments of the unit cell are filled with transformed subcells. There is

no way to put more than one subcell in a compartment. This completes the

description of the unit cell.

It remains to describe the details of material placement within each master

subcell. To facilitate this task an outer do-loop is established over the number

of master subcells. Each master subcell stiffness matrix is then formed by an

inner do-loop ranging over the number of materials in that subcell. The volume

associated with f/f[B]T[D] [B] d(vol) is performed separately for eachintegration

material. The same integration scheme and 3-D integration network is used for

each material in the subcell. However, different integration networks can be used
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for different master subcells. What follows pertains to the integration grid

dimensions for the first master subcell.

The next real number input is the integration grids dimension in the x-direction,

followed by an integer that specifies the number of integration points on the x-

axis. This is followed by a sequence of percentages (0.0 to 100.00) specifying

the fraction of the overall grid dimension represented by the distance of each x-

axis integration point from the origin (except for the first and last values which

are assumedto be 0.0% and 100.0%).

The next two batches of input data repeat this same information for the

integration grid points along the y-axis and along the z-axis. Subsequently, an

integer is specified establishing the number of materials in the first master

subcell. This sets the upper limit on the inner do-loop that begins at this

point.

The first integer related to the inner do-loop is a material number. This selects

a set of material properties from that row of the material property matrix. The

program is now ready for detailed information on fiber orientation and amount of

material at each integration point. First, two spherical angles (_i,_2 in

degrees) specifying fiber direction (Figure II) at the first integration point,

are input, followed by the volume fraction of each octant of volume surrounding

that integration point that contains the material of interest. These volume

fractions are determined by examining photomicrographs of the actual composite and

unit cell models constructed from the same photomicrographs. To save time each

octant volume fraction is read in by means of a two number code. The first number

specifies which of the eight octants is being referenced. Octant one is the +++

octant, octant two the ++- one, octant three the +-+ one, octant four the +-- one,

octant five the -++ one, octant six the -+- one, octant seven the --+ one, and
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octant eight the --- one (Figure 12). A negative octant reference means skip to

the next integration point. Any octant reference number between one and eight

must be followed by a real number (between 0.0 and 1.0) specifying the volume

fraction of current material occupying that octant of that integration point.

The sequence of points over which the intregration ranges is fixed. The first

point is always the origin. The path then runs along the plus z-axis, returns to

the next integration point along the y-axis, and moves in the plus z-direction

again, etc. (Figure 40). When the farthest integration point from the origin is

reached the program returns to the start of the inner do loop for the inclusion of

the next material within that master subcell. When all materials in the master

subcell have been allotted to the various integration points, the program returns

to the outer do loop to repeat the same input data pattern for the next master

subcell. Whenall the master subcells have been described the program proceeds to

calculate the unit cell moduli.
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.__, - - : -

Sample Problem

As an example of data input/output consider the previous model of the plain weave

microgeometry based on diamond shaped tow cross-sections (Figure 24). Only one

master subcell is required. The unit cell consists of 16 inhomogeneous finite

elements. Their eight-node stiffness matrices are all transformations of the

master subcell stiffness matrix. For simplicity the master subcell may be

considered to be a unit cube containing 50% bulk matrix material and 50%

unidirectional composite tow material.

The unit cell, before the subcells are inserted, may be considered to be an empty,

four by four, compartmented container (Figure 24). The first subcell is placed in

the first compartment bounded by the planes x=0, x=l, y=0, y=l. The first

subcells is the untransformed master subcell. The second subcell is placed in the

second compartment bounded by the planes x=0, x=l, y=l, y=2. It is a transformed

master subcell. The transformation consists of a rotation of 90 ° about an axis

normal to the middle plane of the fabric plus a reflections about the middle

plane. The third subcell is placed in compartment x=0, x=l, y=2, y=3. It is a

master subcell reflected about the fabric middle plane; etc.

The following sequence of prompts and inputs leads to the composite moduli

predictions that follow. All input values are enclosed in double brackets. Most

of the master subcell inputs come from Table 2.
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INPUTNO. COMPOSITEMATERIALSNEEDED,NM
((3))

SELECTA MATERIALNUMBERFROMONETO TEN
((3))

SELECT A MATERIAL NUMBER FROM ONE TO TEN

((3))

SELECT A MATERIAL NUMBER FROM ONE TO TEN

((6))

MATERIAL PROPERTY DATA ECHO

20000000.00 1500000.00 .30 .45

20000000.00 1500000.00 .30 .45

500000.00 500000.00 .35 .35

INPUT NO. OF MASTER SUBCELLS NEEDED, NB

((I))

INPUT NO. SUBCELLS (X DIR.) IN UNIT CELL

((4))
INPUT NO. SUBCELLS (Y DIR.) IN UNIT CELL

((4))

INPUT THICKNESS OF UNIT CELL IN INCHES

((I.0))

INPUT THICKNESS OF UNIT CELL IN X DIRECTION

((4.0))

INPUT DIST. (%) ORIGIN TO UNIT CELL NODE 2

((25.0))

INPUT DIST. (%) ORIGIN TO UNIT CELL NODE 3

((5O. 0) )

INPUT DIST. (%) ORIGIN TO UNIT CELL NODE 4

((75.0))

INPUT SIDE LENGTH OF UNIT CELL IN Y DIRECTION

((4.0))

INPUT DIST. (%) ORIGIN TO UNIT CELL NODE 2

((25.0))

INPUT DIST. (%) ORIGIN TO UNIT CELL NODE 3

((5O.O))

INPUT DIST. (%) ORIGIN TO UNIT CELL NODE 4

((75.o) )

INPUT SUBCELL ID. NO. AT LOCATION 1 1

((I))
INPUT SUBCELL ROTATION CODE NO. AT 1 1

((0))

INPUT SUBCELL ID. NO. AT LOCATION 1 2

((I))

INPUT SUBCELL ROTATION CODE NO. AT 1 2

((101))

INPUT SUBCELL ID. NO. AT LOCATION 1 3

((1))
INPUT SUBCELL ROTATION CODE NO. AT 1 3

((100))
INPUT SUBCELL ID. NO. AT LOCATION 1 4

((I))
INPUT SUBCELL ROTATION CODE NO. AT I 4

((I))
INPUT SUBCELL ID. NO. AT LOCATION 2 1

((i))

700000.00

700000.00

185000.00

700000.00

700000.00

185000.00
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INPUTSUBCELLROTATION CODE NO. AT

((103))

INPUT SUBCELL ID. NO. AT LOCATION

((i))

INPUT SUBCELL ROTATION CODE NO. AT

((2))

INPUT SUBCELL ID. NO. AT LOCATION

((I))

INPUT SUBCELL ROTATION CODE NO. AT

((3))

INPUT SUBCELL ID. NO. AT LOCATION

((I))

INPUT SUBCELL ROTATION CODE NO. AT

((102))

INPUT SUBCELL ID. NO. AT LOCATION

((i))
INPUT SUBCELL ROTATION CODE NO. AT

((IOO))

INPUT SUBCELL ID. NO. AT LOCATION

((1))
INPUT SUBCELL ROTATION CODE NO. AT

((I))

INPUT SUBCELL ID NO. AT LOCATION

((i))
INPUT SUBCELL ROTATION CODE NO. AT

((0))
INPUT SUBCELL ID NO. AT LOCATION

((I))

INPUT SUBCELL ROTATION CODE NO. AT

((I01))

INPUT SUBCELL ID NO. AT LOCATION

((i))

INPUT SUBCELL ROTATION CODE NO. AT

((3))

INPUT SUBCELL ID NO. AT LOCATION

((1))

INPUT SUBCELL ROTATION CODE NO. AT

((102))

INPUT SUBCELL ID NO. AT LOCATION

((I))

INPUT SUBCELL ROTATION CODE NO. AT

((103))

INPUT SUBCELL ID NO. AT LOCATION

((I))
INPUT SUBCELL ROTATION CODE NO. AT

((2))

SYMMETRY ABOUT YZ PLANE (T OR F)

((F))

SYMMETRY ABOUT XZ PLANE (T OR F)

((F))

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

1

2

2

3

3

4

4

1

1

2

2

3

3

4

4

1

1

2

2

3

3

4

4
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GRID GEOMETRYFORSUBCELLNUMBER 1

INPUTSIDE LENGTHOF SUBCELL(X DIR.)
((i.0))

INPUTNO. INTEG/PTS.OF SUBCELL(X DIR.)
((2))

INPUT SIDE LENGTH OF SUBCELL (Y DIR)

((1.0))

INPUT NO INTEG/PTS. ON SUBCELL (Y DIR.)

((2))
INPUT HEIGHT OF SUBCELL (Z DIR.)

((I.0))

INPUT NO INTEG/PTS. ON SUBCELL (Z DIR.)

((2))
INPUT NO. OF MATLS. IN SUBCELL NO. 1

((3))

SPECIFY THE CURRENT MATL. ID. NO.

((I))

INPUT IST FIBER SPHERICAL ANGLE

((9O.O))

INPUT 2ND FIBER SPHERICAL ANGLE

((IO.0))
INPUT OCTANT NO. AT GRID NO. 1 1 I

((I))
INPUT MATL. VOL/FR AT OCTANT NO. 1 1

((0.04))

INPUT OCTANT NO. AT GRID NO. 1 1 1

((-I))

INPUT IST FIBER SPHERICAL ANGLE

((9O.O))

INPUT 2ND FIBER SPHERICAL ANGLE

((i0.0))

INPUT OCTANT NO. AT GRID NO. 1 1 2

((2))
INPUT MATL. VOL/FR AT OCTANT NO. 1 1

((0.21))

INPUT OCTANT NO. AT GRID NO. 1 1 2

((-I))
INPUT IST FIBER SPHERICAL ANGLE

((9O.O))

INPUT 2ND FIBER SPHERICAL ANGLE

((i0.0))

INPUT OCTANT NO. AT GRID NO. 1 2 1

((-1))
INPUT IST FIBER SPHERICAL ANGLE

((9O.O))

INPUT 2ND FIBER SPHERICAL ANGLE

((i0.0))

INPUT OCTANT NO. AT GRID NO. 1 2 2

((4))
INPUT MATL. VOL/FR AT OCTANT NO. 4

((O.25))
INPUT OCTANT NO. AT GRID NO. 1 2 2
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((-1))

INPUT IST FIBER SPHERICAL ANGLE

((90.0))

INPUT 2ND FIBER SPHERICAL ANGLE

((i0.0))
INPUT OCTANT NO. AT GRID NO. 2 i 1

((5))
INPUT MATL. VOL/FR AT OCTANT NO. 5

((0.25))

INPUT OCTANT NO. AT GRID NO. 2 1 1

((-i))

INPUT IST FIBER SPHERICAL ANGLE

((90.0))

INPUT 2ND FIBER SPHERICAL ANGLE

((I0.0))

INPUT OCTANT NO. AT GRID NO. 2 i 2

((6))

INPUT MATL. VOL/FR AT OCTANT NO. 6

((O.5O))
INPUT OCTANT NO. AT GRID NO. 2 1 2

((-I))

INPUT IST FIBER SPHERICAL ANGLE

((9O.0))

INPUT 2ND FIBER SPHERICAL ANGLE

((10.0))

INPUT OCTANT NO. AT GRID NO. 2 2 1

((7))
INPUT MATL. VOL/FR AT OCTANT NO. 7

((0.04))
INPUT OCTANT NO. AT GRID NO. 2 2 1

((-i))

INPUT IST FIBER SPHERICAL ANGLE

((9O.0))
INPUT 2ND FIBER SPHERICAL ANGLE

((I0.O))

INPUT OCTANT NO. AT GRID NO. 2 _ 2

((8))

INPUT MATL. VOL/FR AT OCTANT NO. 8

((0.71))

INPUT OCTANT NO. AT GRID NO. 2 2 2

((-I))

SPECIFY THE CURRENT MATL ID. NO.

((2))

INPUT IST FIBER SPHERICAL ANGLE

((0.0))

INPUT 2ND FIBER SPHERICAL ANGLE

((-I0.0))
INPUT OCTANT NO. AT GRID NO. 1 1 1

((I))
INPUT MATL. VOL/FR AT OCTANT NO. 1

((0.21))

INPUT OCTANT NO. AT GRID NO. 1 1 1

((-I))

INPUT IST FIBER SPHERICAL ANGLE
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((0.0))
INPUT 2ND FIBER SPHERICAL ANGLE

((-i0.0))

INPUT OCTANT NO. AT GRID NO. 1 1 2

((2))
INPUT MATL. VOL/FR AT OCTANT NO. 2

((0.04))
INPUT OCTANT NO. AT GRID NO. 1 1 2

((-i))
INPUT IST FIBER SPHERICAL ANGLE

((0.0))

INPUT 2ND FIBER SPHERICAL ANGLE

((-i0.0))

INPUT OCTANT NO. AT GRID NO. 1 2 1

((3)
INPUT MATL. VOL/FR AT OCTANT NO. 3

((O.5O))

INPUT OCTANT NO. AT GRID NO. 1 2 1

((-I))

INPUT IST FIBER SPHERICAL ANGLE

((0.0))
INPUT 2ND FIBER SPHERICAL ANGLE

((-I0.0))

INPUT OCTANT NO. AT GRID NO. 1 2 2

((4))

INPUT MATL. VOL/FR AT OCTANT NO. 4

((0.25))

INPUT OCTANT NO. AT GRID NO. 1 2 2

((-I))
INPUT IST FIBER SPHERICAL ANGLE

((0.0))

INPUT 2ND FIBER SPHERICAL ANGLE

((-I0.0))

INPUT OCTANT NO. AT GRID NO. 2 1 1

((5))

INPUT MATL. VOL/FR AT OCTANT NO. 5

((0.25))
INPUT OCTANT NO. AT GRID NO. 2 1 1

((-I))

INPUT IST FIBER SPHERICAL ANGLE

((0.0))

INPUT 2ND FIBER SPHERICAL ANGLE

((-I0.0))
INPUT OCTANT NO. AT GRID NO. 2 I 2

((-I))

INPUT IST FIBER SPHERICAL ANGLE

((0.0))

INPUT 2ND FIBER SPHERICAL ANGLE

((-I0.0))

INPUT OCTANT NO. AT GRID NO. 2 2 1

((7)
INPUT MATL. VOL/FR AT OCTANT NO. 7

((0.71))

INPUT OCTANT NO. AT GRID NO. 2 2 1
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((-1))
INPUT IST FIBER SPHERICAL ANGLE

((0.0))
INPUT 2ND FIBER SPHERICAL ANGLE

((-i0.0))
INPUT OCTANT NO. AT GRID NO. 2 2 2

((8))

INPUT MATL. VOL/FR AT OCTANT NO. 8

((o.04) )
INPUT OCTANT NO. AT GRID NO. 2 2 2

((-i))

SPECIFY THE CURRENT MATL. ID. NO.

((3))

INPUT IST FIBER SPHERICAL ANGLE

((0.0))

INPUT 2ND FIBER SPHERICAL ANGLE

((0.0))

INPUT OCTANT NO. AT GRID NO. 1 1 1

((I))

INPUT MATL. VOL/FR AT OCTANT NO. 1

((0.75))
INPUT OCTANT NO. AT GRID NO. 1 1 1

((-i))
INPUT IST FIBER SPHERICAL ANGLE

((o.0))
INPUT 2ND FIBER SPHERICAL ANGLE

((0.0))

INPUT OCTANT NO. AT GRID NO. 1 1 2

((2))

INPUT MATL. VOL/FR AT OCTANT NO. 2

((0.75))
INPUT OCTANT NO. AT GRID NO. 1 1 2

((-I))

INPUT IST FIBER SPHERICAL ANGLE

((0.0))

INPUT 2ND FIBER SPHERICAL ANGLE

((0.0))
INPUT OCTANT NO. AT GRID NO. 1 2 1

((3))

INPUT MATL. VOL/FR AT OCTANT NO. 3

((O.5O))

INPUT OCTANT NO. AT GRID NO. 1 2 1

((-I))

INPUT IST FIBER SPHERICAL ANGLE

((0.0))
INPUT 2ND FIBER SPHERICAL ANGLE

((0.0))

INPUT OCTANT NO. AT GRID NO. 1 2 2

((4))

INPUT MATL. VOL/FR AT OCTANT NO. 4

((0.5O))
INPUT OCTANT NO. AT GRID NO. 1 2 2

((-i))

INPUT IST FIBER SPHERICAL ANGLE
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((0.0))
INPUT 2ND FIBER SPHERICAL ANGLE

((0.0))
INPUT OCTANT NO. AT GRID NO. 2 1 1

((5))
INPUT MATL. VOL/FR AT OCTANT NO. 5

((0.50))
INPUT OCTANT NO. AT GRID NO. 2 1 1

((-I))

INPUT IST FIBER SPHERICAL ANGLE

((0.0))

INPUT 2ND FIBER SPHERICAL ANGLE

((0.0))
INPUT OCTANT NO. AT GRID NO. 2 1 2

((6))
INPUT MATL. VOL/FR AT OCTANT NO. 6

((0.5O))
INPUT OCTANT NO. AT GRID NO. 2 1 2

((-i))

INPUT 1ST FIBER SPHERICAL ANGLE

((0.0))
INPUT 2ND FIBER SPHERICAL ANGLE

((0.0))

INPUT OCTANT NO. AT GRID NO. 2 2 1

((7))

INPUT MATL. VOL/FR AT OCTANT NO. 7

((O.25))

INPUT OCTANT NO. AT GRID NO. 2 2 1

((-I))

INPUT IST FIBER SPHERICAL ANGLE

((0.0))

INPUT 2ND FIBER SPHERICAL ANGLE

((0.0))

INPUT OCTANT NO. AT GRID NO. 2 2 2

((8))

INPUT MATL. VOL/FR AT OCTANT NO. 8

((0.25))

INPUT OCTANT NO. AT GRID NO. 2 2 2

((-I))

ELASTIC CONSTANTS OF THE COMPOSITE

EX, EY, EZ = 4395007.97 4395007.97 1181426.56

GYZ,GXZ,GXY = 482009.43 482009.43 423769.42

MUYZ,MUXZ,MUXY = .1274 .1274 .1370

NUYZ,X ; NUYZ,Y ; NUYZ, Z = .0000 .0000 .0000

NUXZ,X ; NUXZ,Y ; NUXZ, Z = .0000 .0000 .0000

NUXY,X ; NUXY, Y ; NUXY,Z = .0000 .0000 .0000
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